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Abstract 

Pollinators play a crucial role in global food security. Due to the enhanced land-use change 

through extensive agriculture, natural habitats for bees are increasingly endangered. Because 

of these past trends in landscape alteration, it is essential to map and understand their species-

habitat relationships to protect them from continuing declines in species richness and abun-

dance. To address this, machine learning offers promising tools for habitat suitability model-

ling, overcoming the limitations of traditional models and enabling more accurate predictions. 

This thesis explores machine learning-based approaches, focusing on Random Forest, to assess 

habitat suitability of pollinators in Lower Saxony and Hannover in Germany. 

The model was created using data on land use and land cover, geomorphology, vegetation, soil 

and bioclimate. Bee occurrence data was collected from the GBIF database and a spatial bias 

reduction approach was developed using the sampbias R package. The Random Forest model 

was developed to assess species density. Different resolutions of the input data, the inclusion 

of temporally more resolved climate data and fine-tuning of the model were tested. For com-

parison, a Maxent model was used to predict the species distribution in the same study areas. 

This thesis demonstrated that the suitability of pollinator habitats can be effectively assessed 

using Random Forest models. Although the Random Forest model showed a trivial fit given R2, 

the better fit of the Maxent model given AUC was a consequence of overfitting in urban areas 

due to the biased occurrence data. The application of a bias raster for targeted filtering of the 

GBIF data resulted in enhanced model accuracy for both Random Forest and Maxent. Despite 

the limitations of comparing modelled species densities with Maxent species distribution, the 

Random Forest model was able to predict bioclimatic factors, including temperature, precipi-

tation and solar radiation, as being particularly important and in line with documented bee 

habitat requirements. These findings underscore the potential of Random Forest for habitat 

suitability modelling and provide a foundation for further refinement. 
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1 Introduction 

As the world's population grows, pollinators play an important role in meeting the increasing 

demand for food security (KHALIFA ET AL. 2021). The production of about 70% of the world's 

major crops depends, at least to some extent, on animal pollination. The western honeybee 

(Apis mellifera) is the world's most important crop pollinator (KLEIN ET AL. 2007), but wild bees 

are also essential for crop production. Changes in agriculture, such as the expansion of fields, 

the loss of semi-natural habitats and the increased use of agrochemicals, are reducing the 

abundance and diversity of wild bees, thereby reducing pollination services for crops (HÄUSSLER 

ET AL. 2017). As a benefit to human well-being, wild pollination is an important ecosystem ser-

vice. Due to declines in species richness and abundance, this service is widely considered to 

be at risk and may therefore lead to a decline in plant diversity in the long term (KLEIN ET AL. 

2007). 

To address the challenges pollinators are facing, it is necessary to identify and protect suitable 

habitats. Mapping pollinator habitats is a fundamental step in this process. In the field of eco-

system service assessment, models are used in a variety of ways. Models of the natural envi-

ronment are applied to assess the structure and function of ecosystems. Land use and land 

cover (LULC) models are a particularly well-known example of this (BURKHARD & MAES 2017). An 

exemplary tool for the assessment of ecosystem services in Europe is ESTIMAP (Ecosystem 

Service Mapping Tool). ESTIMAP incorporates a variety of models, including one that addresses 

crop pollination (ZULIAN ET AL. 2014). The primary input data for the ESTIMAP pollination model 

is LULC data, complemented by expert assessments of the environmental capacity to support 

insect pollinators (HINSCH ET AL. 2024). Another common model is the InVEST (Integrated Valu-

ation of Ecosystem Services and Trade-offs) crop pollination model, which generates pollinator 

abundance and supply indices. The model requires LULC data and various habitat parameters 

such as estimated nesting site and floral resource availabilities (WENTLING ET AL. 2021). As these 

models are based on expert judgement, they may be biased towards certain species or groups 

of species, due to the experience and expertise of the experts involved (PERENNES ET AL. 2021). 

Another method used to determine how species respond to changing environmental parame-

ters is species distribution modelling (SDM) (BURKHARD & MAES 2017). These models, which in-

clude habitat suitability models (HSM), ecological niche models and habitat distribution 

models, quantify the relationship between species and their environments. HSMs play a vital 

role in ecological research, linking species data with environmental predictors using response 

curves derived statistically or theoretically. Advances in science, computing power, geographic 

information systems (GIS), and remote sensing have greatly improved our ability to model and 

predict species distributions, which is increasingly important in the face of the ongoing biodi-

versity crisis. However, when using species data from large web databases, it is crucial to be 

aware of potential sampling biases and uncertainties in species identification, as these data-

bases often lack controlled sampling designs (GUISAN ET AL. 2017). 
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Machine learning (ML) is a valuable approach to overcome limitations in mapping and model-

ling ecosystem services using technological advances. It enables researchers to solve chal-

lenges more effectively such as data availability, uncertainty estimates and the integration of 

socio-ecological aspects. Using ML algorithms, researchers can process large, disparate socio-

ecological datasets, leading to more accurate and comprehensive modelling and mapping of 

ecosystem services. However, despite its potential, the application of ML in ecosystem services 

research still faces challenges and requires further development (MANLEY & EGOH 2022). 

ML is a rapidly growing field that plays a key role in the broader field of artificial intelligence 

(AI). AI was originally created with the goal of giving computers the ability to think and reason 

like humans. ML, a subset of AI, focuses on enabling machines to automatically learn from 

large datasets and use the learned patterns to make predictions about new, unseen data. Deep 

learning, in turn, is a specialised subset of ML that uses deep neural networks to enhance the 

learning process. If AI is thought of as an overarching concept, ML can be considered the cog-

nitive process by which computers learn from data, and deep learning is an advanced, efficient 

method within this learning process (YUAN 2023). 

ML encompasses different approaches to modelling and prediction, with three main types: 

supervised learning, unsupervised learning and reinforcement learning. Supervised learning 

uses a training set of labelled data points, where each data point contains features and labels. 

The goal is to learn a hypothesis that can predict the label of new, unseen data points based 

on their features alone. This approach focuses on minimising the discrepancy between the 

predicted and true labels, using a loss function to guide the learning process. Unsupervised 

learning, on the other hand, does not rely on labelled data. Instead, it seeks to identify under-

lying patterns or structures in the data itself, often through methods such as clustering, where 

data points are grouped based on similarity, or feature learning, which extracts important fea-

tures for efficient processing. Finally, reinforcement learning differs from both by influencing 

future data points through predictions obtained by a hypothesis (JUNG 2022). 

When using ML approaches to assess the habitat suitability of species, a distinction can be 

made between classification and regression problems as part of supervised learning. Classifi-

cation approaches look at presence and absence of species or suitable and unsuitable habitats, 

while regressions look at the degree of suitability through density or abundance of species 

(DŽEROSKI 2009). The most common way in the literature is modelling presence and absence 

points. Due to the lack of absence data in species occurrence web databases, it is a common 

approach to create pseudo-absence or background points (GUISAN ET AL. 2017). A popular and 

well-established ML tool for SDM using the approach of compiling background points is 

Maxent (Maximum Entropy), which has comparable good predictive performance and is par-

ticularly easy to use (MEROW ET AL. 2013). The most widely used ML algorithm in ecosystem 

service research is Random Forest (RF), which can consider both classification and regression 

problems (SCOWEN ET AL. 2021). Because they are robust to overfitting and produce good pre-

diction models, they are increasingly being used in HSM (HOWARD ET AL. 2014). 
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Although widely used in the analysis of presence-only data, the pseudo-absence approach has 

several weaknesses. In the case of pseudo-absences, new data are generated to fit a con-

structed model, rather than constructing a model that fits the data, which can lead to potential 

uncertainty. Another source of error is the interpretability of the results. These approaches 

model the probability that a location is a presence rather than a pseudo-absence, so their 

interpretation is sensitive to the number of pseudo-absences and their location. In addition, 

implementation is problematic as there are many different approaches to how, where and how 

many pseudo-absences should be selected (WARTON & SHEPHERD 2010). 

By describing suitability in terms of occurrence density or abundance in a regression approach, 

these weaknesses can be overcome. This method is well established in species distribution 

research as point process modelling (GUISAN ET AL. 2017; RENNER ET AL. 2015; WARTON & SHEPHERD 

2010). Research on the assessment of species density using RF in comparison to the use of 

absence or background points is available but lacking and has mainly focused on bird species 

(HOWARD ET AL. 2014; KOSICKI 2017, 2020; KOSICKI & HROMADA 2018; MI ET AL. 2017; OPPEL ET AL. 

2012). 

In the assessment of the suitability of habitats for pollinators or pollination services, process-

based models such as ESTIMAP, InVEST, Poll4Pop (Pollinator 4aging and population dynamic 

model) and ARIES (ARtificial Intelligence for Environment & Sustainability) are frequently em-

ployed, particularly at local and national scales (GARDNER ET AL. 2020; HINSCH ET AL. 2024; ŁOWICKI 

& FAGIEWICZ 2021; PASHANEJAD ET AL. 2023). Statistical models, such as generalised linear models 

(GLM), are also used in this area of research (HERRERA ET AL. 2014; RADZEVIČIŪTĖ ET AL. 2021). The 

establishment of ML has led to the widespread adoption of Maxent as the most widely used 

approach for modelling distribution of pollinators, especially at national and continental scales 

(GIANNINI ET AL. 2012; MARSHALL ET AL. 2015; MOENS ET AL. 2024; POLCE ET AL. 2013, 2014, 2018). 

GIMÉNEZ-GARCÍA ET AL. (2023) compared a widely used process-based model with ML models 

and found that ML methods were particularly good at predicting pollination supply on a global 

scale. Geue & Thomassen (2020) assessed the habitat preferences of two bumblebee species 

in Bulgaria and Romania using several different ML approaches, including RF and Maxent. Pres-

ence-only data and relative abundance were used with sampling data from 44 sites, which 

improved the understanding of distribution. RAHIMI ET AL. (2021) used GBIF presence-only data 

to assess the distribution of wild bees in a region of Iran. Methods used included RF and GLM. 

However, the research focused on the results of habitat suitability itself, rather than the per-

formance and suitability of the models. 

The aim of this work is not only to contribute to a better understanding of pollinator habitat 

suitability, but more importantly to show how it can be captured using ML methods that have 

already proven successful in other areas. While many studies have focused on process-based 

models, there is a clear gap in the use of ML techniques at local and regional scales, particularly 

in Germany. This research aims to fill this gap by developing and testing new methods that 

could improve the way pollinator habitat suitability is assessed. Given the global decline in 



Introduction 

 4 

pollinator populations and their essential role in food security and ecosystem health, improv-

ing assessment through ML is both timely and necessary. The results of this thesis could lead 

to more accurate models and a deeper understanding of how pollinators interact with their 

environment. 

Therefore, the methods of this work include the development of a suitable ML approach for 

the assessment of pollinator habitat suitability at local and regional scales in Germany. This 

includes the development of a method based on RF and an approach to reduce spatial bias in 

occurrence data. As part of the method development, different datasets will be analysed and 

tested to determine the sensitivity of the approach to different geodata and scales. Further-

more, the suitability of RF for assessing the suitability of pollinator habitats will be evaluated. 

The secondary objective is to determine which parameters significantly influence pollinator 

habitat suitability. The following research questions will be addressed and answered in the 

thesis: 

1) How is pollinator habitat suitability assessed in the study areas using a machine learn-

ing approach? 

2) How can the spatial bias in occurrence data be reduced and how does this affect the 

modelling? 

3) Which input variables are highly relevant in the model and therefore also for habitat 

suitability modelling?  
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2 Material 

This chapter provides an overview of the selected study areas of Hannover and Lower Saxony, 

as well as the data to be used for modelling. The data is divided into two categories: predictor 

data, comprising geodata of the landscape, vegetation and climate, and occurrence data of 

bees. 

2.1 Study area 

The study area of Lower Saxony is one of the northern federal states in Germany and is the 

second largest in terms of area with around 47,630 km². Hannover is the capital of this federal 

state and is located towards the south of the federal state with an area of 204.2 km² (Fig. 1a).  

The area measurements were calculated using geodata about the administrative areas in Ger-

many from the Federal Agency for Cartography and Geodesy (BKG).  

Lower Saxony forms two geomorphologic zones. To the north is the tidal coast of the North 

Sea with islands, followed by the North German Lowlands. The southern part of the federal 

state is characterized by the Lower Saxony Uplands and Hills. Hannover is located at the border 

between these two landscapes (ZÖLLER ET AL. 2017).  

Lower Saxony is largely characterized by deciduous forests, the North Sea coast and the raised 

and transitional bogs in the North German Lowlands (ELLENBERG & LEUSCHNER 2010). The south-

ern part of the Lowlands is mostly covered with loess, which is known for its particularly fertile 

soils (ZÖLLER ET AL. 2017). 

Lower Saxony is located in the warm-temperate climate zone of the mid-latitudes. The study 

areas have diverse climates due to the transition from maritime to continental influences and 

the landscape. The North Germany Lowlands experience milder winters and moderately warm 

summers due to its proximity to the sea, while the southern uplands and hills are colder due 

to its higher altitude. Hannover represents average climatic conditions of the region (DWD 

2018). 

According to geodata from the BKG, artificial surfaces make up 9.6% of the area, indicating 

significant urbanization and infrastructure in Lower Saxony. Agricultural areas dominate, mak-

ing up 64.3% of the land, reflecting the state's extensive farming. Forests and seminatural ar-

eas account for 24%, showing a substantial number of natural landscapes. Wetlands and water 

bodies both cover around 1% of the area showing the region's relatively small but important 

water-related ecosystems (Fig. 1b). 

The main LULC types in the city core of Hannover are categorised as follows. Urban areas are 

the most frequent, covering 31.4% of the city. Industrial areas account for 19%. Artificial veg-

etated areas make up 14.5%, and forests cover 13.6%, showing significant green spaces within 

the city. Arable land represents 9.8%, and pastures cover 5.6%, reflecting some agricultural 

activity (Fig. 1c). 
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Fig. 1: Study areas within Germany (a) (© GeoBasis-DE/BKG 2024), main land cover classes in Lower Saxony (b) 
(© GeoBasis-DE/BKG 2024); land cover and land use of Hannover (c) (© GeoBasis-DE/BKG 2024) 

2.2 Input data 

The input data consists of various variables describing the landscape and climate of the study 

areas with different spatial resolutions. Efforts were made to select datasets with the highest 

resolution, which are available as open data and easy to process. The complete list of all geo-

data used is provided in Tab. A 1. 
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2.2.1 Land use and land cover data 

Numerous studies indicate that the abundance and diversity of wild bees are strongly influ-

enced by landscape structures and the associated LULC types (MEIER ET AL. 2021). Therefore, 

the primary input data for assessing pollinator habitat suitability or pollination services in 

other studies often includes LULC data (GALLANT ET AL. 2014; HINSCH ET AL. 2024; PERENNES ET AL. 

2021). For this research, three different datasets have been utilized, each offering a different 

classification and level of detail. 

The CORINE Land Cover (CLC) is the oldest database of the Copernicus Land Monitoring Service 

(CLMS). The objective is to standardise land data in Europe to support environmental policies. 

Its first inventory was in 1990 and is currently updated every six years. Managed by the Euro-

pean Environment Agency (EEA) and implemented by national teams, the project now includes 

39 European countries, covering nearly 6 million km2. The CLC uses high-resolution satellite 

images, topographic maps, orthophotos, and ground survey data for mapping. A standardised 

nomenclature classifies the data in three levels and 44 classes. The minimum mapping unit 

(MMU) is 25 ha, and the minimum mapping width is 100 m (BÜTTNER ET AL. 2021). 

For the area of Germany, the more detailed dataset CLC5 exists, which provides a vector format 

description of LULC according to the CLC nomenclature. It is based on Germany's 2018 Land 

Cover Model (LBM-DE2018). Its MMU of 1 ha is generalised to 5 ha for CLC5. Since 2012, it 

updates every three years, but 2018 is the most current available dataset (BKG 2022). 

In Lower Saxony, there are 30 of the 44 different classes present. The main types are non-

irrigated arable land with almost 44%, and pastures with 20%. Coniferous forests cover almost 

13%, and broad-leaved forests cover 7.5%. Discontinuous urban fabric is the fifth largest type 

with 6.5%. In the city of Hannover, 18 classes are present. Discontinuous urban fabric has the 

largest share in area with 26.8%, followed by industrial or commercial units with 15.5%. The 

classes broad-leaved forest, sport and leisure facilities, and non-irrigated arable land each 

have an area share of around 10% (Fig. 2a). 

The next used LULC dataset is a new product by CLMS. The CLC+ Backbone (CLCBB) is a high-

resolution raster product, providing limited, but robust and consistent thematic detail. The 

dataset contains 11 different LULC classes and has a spatial resolution of 10 m. It is primarily 

based on Copernicus Sentinel satellite imagery (EEA 2022; PROBECK ET AL. 2021). The data for 

the reference year 2018 was used. However, a dataset for 2021 was also published during the 

process of this work. 

In Lower Saxony, there are 8 of the 11 classes present. The two main classes are periodically 

herbaceous with 38% and permanent herbaceous with 25%. Woody broadleaved deciduous 

trees have an area share of 15% and woody needle leaved trees of 13%. Sealed areas account 

for 6% in Lower Saxony according to the CLCBB of 2018. In the city of Hannover, the same 

classes are present. With 42% sealed areas are the most frequent. The second largest area 

share is woody broadleaved deciduous trees with 29%. In Hannover, there are 14% permanent 

herbaceous and almost 8% periodically herbaceous areas (Fig. 2b).  
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Fig. 2: Land use and land cover data; CLC5-2018 Lower Saxony and Hannover (a) (© GeoBasis-DE/BKG 2024); 
CLCBB Lower Saxony and Hannover (b) (© EU, CLMS 2018, EEA); Urban Atlas Hannover (c) (© EU, CLMS 2018, 
EEA)
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The last LULC dataset used is the Urban Atlas (UA). The UA provides high-resolution LULC maps 

of urban areas, covering nearly 800 European cities with more than 50,000 inhabitants by 2012 

and 2018. The project started in 2006 with 300 cities with more than 100,000 inhabitants. Each 

map covers the city and its surroundings. The classification system, derived from CLC, includes 

27 classes in 5 thematic groups. The MMU of this dataset is 0.25 ha in urban areas and 1 ha in 

rural areas. The dataset is derived from satellite image interpretation, topographic, and LULC 

data (EUROPEAN UNION 2020). 

In Hannover, 22 of the 27 classes of the UA are present. The most frequent class is industrial, 

commercial, public, military and private units with 17%. Green urban areas and discontinuous 

dense urban fabric (S.L.: 50% - 80%) both have around 13%. S.L. describes the degree of soil 

sealing. The area share of arable land (annual crops) is almost 11%. 9.5% of the area in Han-

nover is continuous urban fabric (S.L.: > 80%) and 8% forests according to the UA (Fig. 2c). 

2.2.2 Digital terrain model 

To provide a clearer description of the landscape, a digital terrain model (DTM) was used. This 

model describes the surface of the terrain without its natural and artificial objects, such as 

houses or trees, representing the relief (JÄGER & HEIPKE 2020). The State Office for Geoinfor-

mation and Land Surveying Lower Saxony (LGLN) provides the DTM as open data with a preci-

sion of 1 m. This was selected for the study area of Hannover (LGLN 2019). Since this resolution 

would be too detailed for the entire area of Lower Saxony, the DTM200 was chosen for this 

broader region. This is a nationwide dataset with a spatial resolution of 200 m, derived from 

the DTMs of the surveying authorities of the federal states (BKG 2021). The DTM 200 covers 

the area of Lower Saxony with elevation values ranging from -15.86 to 962.83 m (Fig. 3a). The 

DTM 1 for Hannover ranges from 0 to 121.77 m (Fig. 3b). 

2.2.3 Normalised difference vegetation index 

GALBRAITH ET AL. (2015) state that variables such as the normalised difference vegetation index 

(NDVI) can potentially be useful for pollinator studies. The NDVI is a simple ratio of reflectance 

measurements in the red and near-infrared bands, making it a key tool for monitoring vegeta-

tion changes (NIGHTINGALE ET AL. 2008). 

The dataset Sentinel-2-Vegetation Index from the German Aerospace Center (DLR) describes 

the NDVI in Germany. The data was derived from Sentinel-2 images and covers the period from 

the end of June 2015 to the end of September 2017. Google Earth Engine was used to select 

all Sentinel-2 images with less than 60% cloud cover. A median mosaic of these images was 

then created for Germany. The dataset has a spatial resolution of 10 m (DLR 2023). The NDVI 

values for Lower Saxony range from -0.22 to 0.41 (Fig. 3c) and for Hannover from -0.21 to 0.36 

(Fig. 3d). 
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Fig. 3: Digital terrain model 200 m in Lower Saxony (a) (© GeoBasis-DE/BKG 2024); Digital terrain model 1 m in 
Hannover (b) (© GeoBasis-DE/LGLN 2024, CC-BY 4.0); Normalized Difference Vegetation Index in Lower Saxony 
(c) and Hannover (d) (© DLR Sentinel-2 NDVI 2015 Germany) 

2.2.4 Climate data 

A combination of temperature and radiation intensity can affect the abundance of bees, as 

bees become inactive when it falls below a certain threshold (ZULIAN ET AL. 2013). Furthermore, 

precipitation is also a commonly identified variable that can influence the abundance of bees 

(KAMMERER ET AL. 2021; MOENS ET AL. 2023). 

Germany’s national meteorological service (DWD) provides various categories of different cli-

mate observations as open data (KASPAR ET AL. 2019). Their database includes historical and 

current German climate data. It contains various variables from classic meteorological data 

from near the earth's surface, data from the free atmosphere, the ground and phenological 

data. The data is gridded and available with a resolution of 1 km x 1 km (KASPAR ET AL. 2013). 

In addition to data with very high temporal resolution, such as 5 minutes, hourly, daily and 

monthly, data with averaged values for seasonal, annual and multi-annual periods are also 
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provided. Two different temporal resolutions were selected for this study. Multi-annual data 

covering a period from 1991-2020 and seasonal data to observe how their relevance for the 

ML model changes with changing temporal resolution. 

The four seasons are divided as follows. March, April and May are the first season, June, July 

and August are the second. September, October and November are the third and December, 

January and February are the last season. The following six different variables are available as 

seasonal data: sum of sunshine duration, sum of precipitation, sum of de Martonne drought 

index, monthly averaged daily minimum, mean and maximum air temperature. All of them 

were selected for this work. They are shown exemplarily in Fig. 4 for the summer of 2023 in 

Lower Saxony. 

 

Fig. 4: Exemplary representation of the seasonal climate data in Lower Saxony: Summer 2023; sunshine duration 
(a) (DWD CDC: Seasonal grids of sum of sunshine duration over Germany, version v1.0, 2018); precipitation (b) 
(DWD CDC: Seasonal grids of sum of precipitation over Germany, version v1.0, 2018); drought index (c) (Seasonal 
grids of sum of drought index (de Martonne) over Germany, version v1.0, 2018); min temperature (d) (Seasonal 
grids of monthly averaged daily minimum air temperature (2m) over Germany, version v1.0, 2018); mean tem-
perature (e) (Seasonal grids of monthly averaged daily mean air temperature (2m) over Germany, version v1.0, 
2018); max temperature (f) (Seasonal grids of monthly averaged daily maximum air temperature (2m) over Ger-
many, version v1.0, 2018) 

The same variables were selected for the multi-annual period from 1991-2020. However, more 

than those were available here, which is why the following parameters were included as well: 

mean sum of global radiation, soil temperature in 5 cm depth under uncovered soil and soil 

moisture in 5cm depth under grass and sandy loam. The total of 9 parameters are shown in 

Fig. 5 for Lower Saxony. 
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Fig. 5: Multi-annual climate data in Lower Saxony: sunshine duration (a) (DWD CDC: Multi-annual grids of annual 
sunshine duration over Germany 1991-2020, version v1.0, 2018); precipitation (b) (DWD CDC: Multi-annual grids 
of precipitation height over Germany 1991-2020, version v1.0, 2018); drought index (c) (DWD CDC: Multi-annual 
grids of drought index (de Martonne) over Germany 1991-2020, version v1.0, 2018); min temperature (d) (DWD 
CDC: Multi-annual grids of monthly averaged daily minimum air temperature (2m) over Germany 1991-2020, 
version v1.0, 2018); mean temperature (e) (DWD CDC: Multi-annual grids of monthly averaged daily mean air 
temperature (2m) over Germany 1991-2020, version v1.0, 2018); max temperature (f) (DWD CDC: Multi-annual 
grids of monthly averaged daily maximum air temperature (2m) over Germany 1991-2020, version v1.0, 2018); 
global radiation (g) (DWD CDC: Gridded multi annual monthly mean sums and multi annual yearly mean sum of 
incoming shortwave radiation (global radiation) on the horizontal plain for Germany based on ground and satellite 
measurements, Version V003, 2024); soil temperature (h) (DWD CDC: Multi-annual grids of soil temperature in 5 
cm depth under uncovered soil, version 0.x, 2024); soil moisture (i) (DWD CDC: Multi-annual grids of soil moisture 
in 5cm depth under grass and sandy loam, version 0.x, 2024) 

2.2.5 Soil types 

Most wild bees are ground nesting species, and the above-mentioned soil temperature can 

affect the nesting activity (GARDEIN ET AL. 2022). The soil type is another factor that should be 

considered as soil characteristics are important for many wild bees (MOENS ET AL. 2023). 

Information about soil types can be found in the horizon-based data of the attribute tables for 

soil surface data from the State Office for Mining, Energy, and Geology (LBEG). This table in-

cludes details such as horizon number, thickness, and depth. For each horizon, a soil type is 
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specified. Data points are localized using easting and northing coordinates. The soil texture, 

defined by its particle size and the relative amounts of sand, silt, and clay is given (EVERTSBUSCH 

ET AL. 2021). 

2.3 Pollinator occurrence data 

The most used database for HSMs is the Global Biodiversity Information Facility (GBIF) (GUISAN 

ET AL. 2017). The international platform provides comprehensive access to digital species oc-

currence data. Using international data standards enables efficient indexing, searching, and 

filtering of data (SVENNINGSEN & SCHIGEL 2024). When working with the data, it should be noted 

that uncertainties in the identification of species may occur, as well as low coordinate accuracy 

and incomplete or uneven spatial coverage of the actual distribution of a species (GUISAN ET AL. 

2017). 

The occurrence data from the GBIF database was downloaded in R using the rgbif library. In 

order to obtain as much data as possible, all bee families occurring in Lower Saxony were se-

lected: Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae, and Melittidae. In total, 

46,067 occurrences were found. Duplicate entries and entries with a coordinate uncertainty 

of over 1,000 m were deleted. Datasets containing NA values were removed. Additionally, 

since there is a lack of data before the year 2010, these records were also excluded. This re-

sulted in a total of 34,681 occurrences remaining. The spatial distribution and the distribution 

of families are shown in Fig. 6. It is evident that the family Apidae is the most frequently oc-

curring. The occurrences are mainly concentrated in settlement areas. Occurrences have risen 

sharply over time, especially since 2018. The highest records are in 2022 and 2023. 

 

Fig. 6: Bee occurrences in Lower Saxony by family and year (GBIF.org (01 July 2024) GBIF Occurrence Download 
https://doi.org/10.15468/dl.vnb2vm) 
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3 Methods 

The methods in this thesis are divided into three different parts. The first part comprises the 

data preparation of the input predictor variables and the occurrence data as training data. 

Subsequently, two different ML approaches for capturing pollination habitat suitability are in-

troduced. The focus of this work is on the use of the RF approach. Additionally, Maxent is used 

as a widely known approach to model species distribution using occurrence data and is utilised 

in this thesis to compare its results with the ones of the RF approach. The methods are imple-

mented in R 3.6.0+ and ArcGIS Pro 3.1.1. In addition, ChatGPT 4o was used to debug and sim-

plify scripts and improve performance. 

3.1 Input data preparation 

The input data will be prepared in the same way for both ML approaches. For further pro-

cessing, it needs to be arranged in an identical format, i.e. in the same coordinate reference 

system (CRS), as raster data with a consistent cell size and the same extent. In addition, further 

variables are derived and calculated from the input data. The goal is to test as many variables 

as possible, especially those that are also considered in other research, to find out which of 

these are rated as particularly important by ML approaches and the stated task. Different cell 

sizes are tested within the methods to observe how this affects the calculations. In the follow-

ing, it should be noted that the data preparation steps are repeated with these different cell 

sizes. 

Tab. 1 lists the different variables used for the ML approaches. If they were derived, it is shown 

which data was used for this. The short name used in the further work is specified. It is also 

presented for which study area they are employed, as there are some different resolution da-

tasets for Lower Saxony and Hannover. The climate data are not listed here, as no further pa-

rameters are derived from them. The processing of this data is described in the end of this 

chapter. 

For the LULC data, one dataset with many classes and one with few classes is selected for each 

study area to analyse how this affects the calculations. The high-resolution CLCBB is selected 

for Hannover and Lower Saxony. This dataset is already available as a raster dataset and is 

therefore only cropped to the respective study areas. As a LULC dataset with several classes, 

CLC5 is used for Lower Saxony and UA for Hannover, as this offers even more differentiated 

classes for cities regarding artificial areas. The LULC data is cut to the respective study areas in 

ArcGIS Pro and saved as a TIFF file using the Feature to Raster function.  

The ESTIMAP pollination model is a common approach to assess pollination service potential 

(HINSCH ET AL. 2024). A central component of the model is the integration of nesting suitability 

and floral availability, which results from different models that estimate how suitable different 

landscape types are as sources of food and shelter for insects. The nesting suitability and floral 

availability parameters refer to different LULC types and are based on the CLC nomenclature. 

The CLC classes were assigned values from 0 to 1 for both parameters (ZULIAN ET AL. 2013). 
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Tab. 1: Overview of the input variables 

Data type Nr. Variable  Short name Source Study area Spatial resolution Data format 

LULC 

1 
CORINE Land Cover 5 ha CLC5  Lower Saxony MMU 5 ha Shape file 

Urban Atlas UA  Hannover MMU 0.25 ha Feature class 

2 CLC+Backbone CLCBB  Lower Saxony + Hannover 10 m GeoTIFF 

3 Floral availability FA CLC5 Lower Saxony + Hannover   

4 Nesting suitability NS CLC5 Lower Saxony + Hannover   

5 Distance from forest edges DisFE 
CLC5 Lower Saxony   

UA Hannover   

6 Distance from natural areas DisNA 
CLC5 Lower Saxony   

UA Hannover   

7 Distance from riparian areas DisRA 
CLC5 Lower Saxony   

UA Hannover   

8 Distance from urban areas DisUA 
CLC5 Lower Saxony   

UA Hannover   

Geomor-
phology 

9 
Digital terrain model 200 m  DTM200  Lower Saxony 200 m ASCII 

Digital terrain model 1 m DTM1  Hannover 1 m GeoTIFF 

10 
Slope 200 m  Slope200 DTM200 Lower Saxony   

Slope 1 m  Slope1 DTM1 Hannover   

11 
Aspect 200 m  Aspect200 DTM200 Lower Saxony   

Aspect 1 m  Aspect1 DTM1 Hannover   

Vegetation 12 NDVI NDVI   10 m GeoTIFF 

Soil 

13 Clay amount Clay Soil Type Lower Saxony + Hannover 1 km ASCII 

14 Silt amount Silt Soil Type Lower Saxony + Hannover 1 km ASCII 

15 Sand amount Sand Soil Type Lower Saxony + Hannover 1 km ASCII 
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The Join-Field function in ArcGIS Pro can be used to append the values for floral availability 

and nesting suitability to the CLC5 classes. The CLC5 vector data for the respective variables is 

then exported as a TIFF file using the Feature to Raster function, specifying the required cell 

size. The extent of the output file can be determined by specifying a snap raster. This is used 

to limit the file to the needed study area. 

Other important parameters for assessing pollinator habitat suitability are forest edges, semi-

natural areas and riparian zones since they provide nesting habitats and floral resources (ZU-

LIAN ET AL. 2013). The aim is to calculate the distance per grid cell to the respective areas based 

on the LULC data. At this point, the distance to urban areas is also calculated to evaluate the 

spatial bias in the occurrence data due to the higher population density in cities. In conse-

quence, this distance functions as a kind of control value. The corresponding LULC classes are 

selected for the Lower Saxony study area in the CLC5 and for Hannover in the UA. Processing 

is carried out in ArcGIS Pro. The size of the forest edges and riparian areas and the selection of 

the corresponding classes for these two parameters is based on the ESTIMAP pollination 

model (ZULIAN ET AL. 2013). 

To calculate the distance to forest edges, forest areas must first be selected. A negative buffer 

of 50 m is then created, which represents the forest edges. The Distance Accumulation tool is 

executed for these features to calculate the straight-line distance from the forest edges. When 

executing this function, the desired cell size is specified again and a mask to cover the required 

study area. The distance to semi-natural areas is calculated in a similar way: they are selected 

in the respective LULC dataset and then serve as input data for distance calculation using Dis-

tance Accumulation. To calculate the riparian areas, a 25 m buffer is first created around wet-

lands and water bodies. Next, agricultural areas, forests and semi-natural areas are selected 

and cut to the extent of the riparian areas. The distance can then be calculated again from this 

output. Finally, the distance to urban surfaces is calculated by selecting artificial surfaces and 

then calculating the distance from them. The exact CLC5 and UA classes selected for the cal-

culation can be found in Tab. A 2 of the Appendix. 

Other important parameters such as slope and aspect can be calculated from elevation models 

(GUISAN ET AL. 2017). The DTM with a resolution of 1 m, which is used for the study area of 

Hannover, is provided in tiles of 1 km x 1 km. For further processing, it is merged into a TIFF 

file using the ArcGIS Pro function Mosaic to New Raster. Further processing takes place in R. 

Using the raster library, the DTM files are first cropped to the extent of the respective study 

area using the crop function. The output file is a rectangular raster with the extent of the study 

area. The mask function of the same library is then used to restrict the extent exclusively to 

the area of the study area. The terrain function can then be applied to calculate the slope and 

aspect using the respective DTMs as input. No further parameters are derived from the NDVI 

data. This dataset is only cropped to the extent of the study areas using the crop and mask 

functions in R. 
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It is assumed that most ground-nesting bees prefer sandy or sandy-loamy soil (ANTOINE & FOR-

REST 2021). To further analyse this connection, the respective amounts of sand, clay and silt in 

the soil are assessed. This data is extracted from the horizon-based data of the attribute tables 

for soil surface data from the LBEG. The data table was loaded into ArcGIS Pro using XY Table 

to Point. A compilation of nesting data for bees showed that the average minimum nesting 

depth is 17 cm, while the average maximum depth is 35 cm (CANE & NEFF 2011). Therefore, all 

values with an upper horizon depth of more than 35 cm were removed so that only the rele-

vant horizons were included in the calculation. For each type of soil texture, the mean value 

of the respective sand, silt and clay content was determined according to AG BODEN (2005) 

(Tab. A 3) and was then attached to the point features using Join Field. The points with the 

proportions of sand, silt and clay were then exported as a shapefile. In R, the respective pro-

portions could then be interpolated as a raster for the study areas using the Raster library with 

the interpolate function. The required cell size was used. Since there is no dataset that provides 

this information, this is one method to get the best possible approximation of the correspond-

ing amounts of sand, clay and silt in the study areas. 

The next step is to convert the previously prepared raster files into a standardised format. They 

are processed in R using the terra, raster and sf libraries. The outlines of the study areas are 

read in as shapefiles and defined as the target extent. Using a function, all TIFF files are loaded 

and, if necessary, transformed into the CRS UTM ETRS Zone 32 N (EPSG: 25832) using project. 

The data is cut to the target extent using crop. The required cell size is defined. A template 

raster with the target extent and cell size is created and the TIFF files are resampled to its 

characteristics using the resample function. With mask, the data is finally limited to the extent 

of the study area. 

The climate data is prepared in a similar way. However, it is important to note that these are 

provided in the CRS DHDN 3-degree Gauss-Krüger Zone 3 (EPSG:31467) and the CRS is not yet 

linked to the data. Before the data can be transformed into the CRS UTM ETRS Zone 32 N, the 

CRS Gauss-Krüger Zone 3 first needs to be set. The next steps are the same as the ones above. 

The climate data and their short names used in the following work are listed in Tab. 2. 

Tab. 2: Overview of the climate input variables 

Data 
type 

Nr. Variable  Short name 
Study 
area 

Spatial  
resolution 

Data 
format 

C
lim

at
e 

16 Sunshine duration Sunshine 

Lower  
Saxony + 
Hannover  

1 km  ASCII  

17 Precipitation height Precipitation 

18 Drought index Drought 

19 Minimum air temperature TempMin 

20 Mean air temperature TempMean 

21 Maximum air temperature TempMax 

22 Global radiation Radiation 

23 Soil temperature SoilTemp 

24 Soil moisture SoilMoist 
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The steps described in this chapter are repeated several times. One reason for this is that the 

data is analysed for two different study areas and the other is that different cell sizes are eval-

uated. The cell sizes 100 m and 500 m are used for the extent of Lower Saxony and the cell 

sizes 10 m and 50 m for Hannover. The process is therefore repeated a total of four times, 

which is why the processes were partially automated using scripts. Only the multi-annual cli-

mate data is used at first. The seasonal data will be tested at a later stage of this work, but 

then is processed in the same way. The resulting input data is visualised in Fig. A 1 for 10 m in 

Hannover and in Fig. A 2 for the cell size of 100 m in Lower Saxony. 

3.2 Random Forest 

RFs were first introduced by Leo Breiman in 2001 (BREIMAN 2001). A RF is an ensemble of deci-

sion trees built using random samples of data. Instead of using all features to split nodes, each 

tree uses a random subset of features to find the best split (Fig. 7). This creates many weaker 

trees, each producing different predictions (BONACCORSO 2017). While individual trees have a 

high variance, as even a small adjustment changes the tree significantly, RF utilises the combi-

nation of many individual trees (VALAVI ET AL. 2021). A key advantage is that the algorithm can 

be used for both categorical and continuous variables, i.e. for classification and regression 

problems. Further advantages are that they are relatively fast to train and predict and have a 

built-in estimation of the generalisation error (CUTLER ET AL. 2012). 

 

 

Fig. 7: Flowchart of a random forest algorithm (own figure based on Fu & Qi 2022) 
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RF is based on the bagging approach (BREIMAN 2001). Bagging is an ensemble learning tech-

nique that improves prediction models by creating multiple new sample datasets from the 

original training dataset using random sampling with replacement (bootstrap sampling). Each 

sample is used to train the same model, and the combined predictions reduce variance and 

overfitting, improving overall performance. RF extends bagging specifically to decision trees. 

It introduces additional randomness by selecting a random subset of features for each tree, 

which increases diversity and reduces correlation between trees. This method is advantageous 

for handling large datasets with many features, requires minimal parameter tuning, and pro-

vides estimates of feature importance. RF combines predictions from multiple decision trees 

to create a more stable, accurate and robust model, making it a popular algorithm in ML (JU-

WARIYEM ET AL. 2024) 

3.2.1 Training data preparation 

A target variable is required to train the RF model. Since the GBIF data only contains presence 

and no absence data, this cannot be used directly as a target variable. A common method is 

to use background samples as a second class. They record the landscape and enable a com-

parison of the preferred environmental conditions of a species with the existing conditions of 

the entire landscape observed. Another option is to record background data as locations 

where the species has not yet been recorded. However, RF models are known to have poorer 

prediction performance compared to other methods when using background data (DŽEROSKI 

2009; VALAVI ET AL. 2021). 

In this work, an attempt is made to record habitat suitability without compiling background 

data. For this approach, the occurrence per grid cell of the input variable is counted. In this 

way, the abundance and distribution of bees can be approximated. This method changes the 

problem into one of regression, where the goal is to predict the density or abundance of oc-

currences within each cell, rather than a binary presence or absence classification. Thus, the 

target variable is a measure of occurrence records per unit rather than the presence or ab-

sence of a particular species (GUISAN ET AL. 2017). 

The workflow of preparing the training data is summarised in Fig. 8 and described in detail in 

the following. The processing is done in R using the libraries raster, sp, and dplyr. The input 

variables have already been prepared in a standardised format with the exact same spatial 

extent and resolution. The input variables are stacked to a multi-layer raster object. A template 

raster is selected from the raster stack to extract cell coordinates. These coordinates are con-

verted into a data frame. The values from the raster stack are extracted and combined with 

the coordinates of the created data frame. The occurrence data is rasterised using the tem-

plate grid, while the number of occurrences per cell is counted and saved in the new grid using 

rasterize. The counts of occurrences are extracted from the rasterised data and added as a 

new column to the data frame. Any rows with missing values or where the count is zero are 

removed from the data frame to create the training dataset. Columns containing the LULC 
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values (UA, CLC5, CLCBB) in the training dataset are converted to character type as these val-

ues are not numeric.  

 

Fig. 8: Training data preparation workflow 

The GBIF data are influenced by unevenly distributed sampling efforts (BECK ET AL. 2014). This 

is also visible in the training data, as there are many very high outliers. To ensure that these 

do not influence the subsequent calculation, the training data is first sorted by the count of 

occurrences in descending order. The value at the 5th percentile position is calculated and 

used to replace all values above it. To allow a comparison between the different models, the 

relative count value is calculated by dividing the count value by the maximum count value. The 

training data preparation is repeated several times for the required cell sizes in the respective 

study areas. 

3.2.2 Random forest model 

The RF algorithm was implemented in R using the ranger (RANdom forest GEneRator) package. 

The software was first introduced in 2017 as a C++ application and R package and is a compar-

atively fast and memory efficient implementation of RF particularly suitable for high-dimen-

sional data (WRIGHT & ZIEGLER 2017). The previously prepared data is split into a training dataset 

and a validation dataset. The most suitable split ratio can vary greatly (JUNG 2022). Initially, the 

data is split in a ratio of 70% training and 30% test data. The ranger function is used to create 

the RF model. The predictors are set to all columns of the training datasets containing the 

input variable values. The response variable is the column containing the number of occur-

rences per raster cell. 

*short names 

according to Tab. 1 
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The variable importance is measured using the permutation method, which shows how much 

a predictor variable contributes to the prediction accuracy of the model. This is done by ran-

domly shuffling the values of the variable in question and observing the increase in prediction 

error or mean squared error (MSE). If the prediction accuracy significantly worsens, the varia-

ble is estimated important, as it indicates the model's reliance on that variable for accurate 

predictions (CUTLER ET AL. 2012). Additionally, a specific random seed is set to ensure reproduc-

ibility of the results. 

Mtry is defined as the number of variables to potentially split at each node. The default is the 

square root of the number of predictor variables, rounded down. For 24 predictor variables, 

this gives an mtry of 4 (WRIGHT & ZIEGLER 2017). The default number of trees in this package is 

500. The target node size is defined as the minimum number of observations in a terminal 

node. Low values result in trees with greater depth, as more splits must be performed to reach 

the terminal nodes. The default value for regressions is 5 (PROBST ET AL. 2019). The default split-

ting rule for regressions is to use variance, which means that the algorithm chooses the splits 

that maximise the reduction in variance (WRIGHT & ZIEGLER 2017). 

In RFs, each tree is built using a bootstrap sample of the training data. The data that is not 

used in the construction of a particular tree is referred to as the out-of-bag (OOB) data for that 

tree. For each observation, its value can be predicted using only the trees for which that ob-

servation was OOB. The OOB prediction error is calculated as the MSE between the OOB pre-

dictions and the actual observations (CUTLER ET AL. 2012). In addition, the ranger function 

calculates R2
OOB, which measures how well the RF model explains the variance of the target 

variable using OOB predictions (CHICCO ET AL. 2021). 

Next, the importance function is used to extract the variable importance of the previously 

computed RF model. The predict function makes predictions on the test dataset using the 

trained RF model. The results are stored in a column with the test data. Combining the predic-

tions with the test data allows a direct comparison between predicted and actual values, which 

is essential for further model validation. 

The RF models were validated using mean absolute error (MAE), MSE, coefficient of determi-

nation (R2) as well as root mean square error (RMSE) and standard deviation (SD). MAE 

measures the sum of the absolute errors divided by the sample size and MSE measures the 

average squared difference between the estimated values and the actual value. The RMSE is 

calculated by taking the square root of the MSE. Lower values of the three measures indicate 

better model performance, with the best value being 0. The disadvantage of these measures 

is that their values go to infinity and therefore as a single value do not say much about the 

performance of the regression. It is suggested to use R2, since it tends to be more informative 

and truthful. R2 quantifies the proportion of the variance in the dependent variable that is 

explained by the independent variable. A value of 1 indicates a perfect fit, while 0 corresponds 

to a trivial fit. Negative values indicate a poor fit. The SD is a measure of the variation around 

the mean (CHICCO ET AL. 2021). 
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To best assess pollinator habitat suitability in both study areas, the RF model is applied in sev-

eral iterations with different settings. The workflow is shown in Fig. 9. Firstly, different cell sizes 

are tested during data preparation. This means that the validation parameters and permuta-

tion importance are considered and compared to select the best cell size for each study area. 

An attempt is then made to minimise the spatial bias in the occurrence data. Various settings 

are also tested here. In the third iteration, the periodic climate data is replaced by seasonal 

data. This involves comparing different time periods. Finally, the model is fine tuned. Input 

data with low significance is removed and different hyperparameter settings are tested. The 

methods of these iterations are explained in detail in the following chapters. 

 

Fig. 9: Workflow of developing the RF model 
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3.2.3 Spatial filtering using sampbias 

Geographic sampling bias occurs when the effort to collect data is unevenly distributed across 

a study area, often due to physical accessibility factors such as roads, which influences where 

sampling takes place. This bias is primarily driven by human accessibility, leading to most spe-

cies observations being made in or near cities and along roads or paths. The biased sampling 

results can reduce the accuracy of models estimating species distributions. The sampbias R 

package is designed to quantify and address accessibility bias in species occurrence datasets 

using a Bayesian approach. The key functionalities of sampbias include the evaluation of the 

accessibility bias within a given dataset and the visualisation on how the bias is spatially dis-

tributed across the study area. The package can analyse any multi-species occurrence dataset 

against any geographic gazetteer and allows direct inputs from GBIF. The output of sampbias 

includes measures of sampling rates across space, allowing for comparisons between different 

bias factors such as roads and rivers (ZIZKA ET AL. 2021). 

In order to capture the spatial bias of the occurrence data, geodata of settlement areas and 

roads are extracted from the detailed vector dataset Basis-DLM of the LGLN (© GeoBasis-

DE/LGLN 2024, CC-BY 4.0). The object-structured dataset describes the landscape of Lower 

Saxony as polygons, lines and points, which are described and classified by attributes (LGLN 

2024). In ArcGIS Pro, settlement areas were dissolved and those with an area of over 100 ha 

were selected. To identify the spatial bias, large areas with many inhabitants are particularly 

relevant. Important roads (motorway, state road and national road) were also selected. Both 

layers were exported as a shapefile for further processing in R. 

The spatial bias is particularly noticeable in Lower Saxony. The Hannover study area serves 

primarily as a comparative value for a region without this spatial bias. The attempt to filter the 

bias is therefore only carried out for Lower Saxony. 

Using the terra library, the shapefiles of the settlements, roads and the region of Lower Saxony 

are loaded and transformed to CRS World Geodetic System 1984 (EPSG:4326) since sampbias 

is working with this CRS. A named list of gazetteers is created, containing the roads and settle-

ments shapefiles. This list is used as an input for the bias calculation to consider these features 

in the sampling bias analysis. The calculate_bias function of the sampbias library is used to 

compute the sampling bias, considering the occurrence data, a specified resolution in degrees, 

the gazetteers list, and the restricted study area of Lower Saxony. The resolutions 0.02° and 

0.05° are used to observe how different levels of resolution affect the filtering process. 

The project_bias function is used to project the sampling bias results, which are then visualized 

using the map_bias function. The type of mapping chosen is sampling_rate. A raster repre-

senting the sampling bias, derived from the combined effects of roads and settlements, is gen-

erated and saved as a TIFF file for later comparison. 

A filtering process was applied to remove possible sampling bias in the occurrence data. The 

process aims to remove points in regions with high sampling bias. The occurrence data is con-

verted to a spatial object using the Longitude and Latitude of the occurrence data. The CRS of 
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the occurrence data is transformed to match that of the bias raster. For each occurrence point, 

the corresponding raster cell ID and bias value are extracted. This information is critical for 

determining the sampling bias associated with each occurrence.  

A function is defined to randomly remove points from areas with high sampling bias. The func-

tion groups the data by the raster cell IDs. This ensures that the bias adjustment is performed 

separately for each spatial cell. Within each group, the function performs three steps. If the 

bias value is missing, it is replaced with 0, to ensure that missing values do not affect the cal-

culation. The bias value is rescaled to a range of 0 to 1 using the rescale function. This value 

represents the proportion of points to remove from each group. The range is later adjusted to 

0-1.25 and 0-1.5 to test filtering with varying intensity. The number of points to remove is 

calculated by multiplying the total number of occurrences in the group by the mean of the 

rescaled values.  

The function then ungroups the data and re-groups it by the cell column and the calculated 

number of points to remove. This ensures that the filtering operation is correctly applied to 

each cell. Within each group, points are removed based on the calculated number. The defined 

function is applied to the occurrence data, resulting in a filtered dataset with reduced sampling 

bias. The filtered data is converted back to a data frame, including original coordinates, for 

further analysis. This data can then be processed again with sampbias to visualise the reduc-

tion of the sampling bias. 

3.2.4 Comparison of seasonal and periodic climate data 

The next iteration will test the effect of more precise climate data on the performance of the 

model. In the first runs, averaged climate data for 1991-2020 was used. As the climate varies 

over the year and there are significant differences, particularly within the seasons, the sea-

sonal climate data will be used for the training data in this step. The seasonal data is available 

for sunshine duration, precipitation, drought index and minimum, mean and maximum air 

temperature. The periodic data is still used for the variables global radiation, soil temperature 

and soil moisture. The seasonal data was also prepared as described above so that it is availa-

ble in the same extent, resolution and CRS as the other input data. 

However, the training data is then prepared somewhat differently, as the seasonal data must 

be appended to the corresponding years and seasons. The process is carried out in R. The 

climate data is again analysed for both study areas. The data that previously provided the best 

result is processed. For Lower Saxony, the occurrence data that produced the best result during 

spatial filtering is used. For Hannover, the data with the cell size is used, which produced a 

higher accuracy of the model in the first iteration. 

The corresponding occurrence data is loaded and converted to a spatial feature object with 

coordinates transformed to the CRS of the input raster data. A function is defined to categorise 

the occurrence months into seasons represented by the code which was also used to identify 

the season in the file name of the climate data. The result is a new column in the occurrence 

data frame, which contains the season code for each occurrence based on its month. A raster 
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template is created representing the input data. The st_coordinates function of the sf library 

is used to extract the coordinates from the occurrences data frame. Based on these coordi-

nates and the raster template the function cellFromXY of the raster library is utilised to assign 

each occurrence to a cell in the raster template based on its coordinates in form of cell IDs. 

The data is then grouped by the cell ID, year, and season to count occurrences per year, season 

and raster cell. 

In the filenames of the seasonal climate data information about climate variable, season and 

year is named. A function is defined to extract this information. The climate data files are 

loaded, and their values are extracted and combined with the occurrence data based on 

matching year and season using the extract function of the terra library. The extracted climate 

data is merged with the occurrence data based on the cell IDs, years and seasons.  

Finally, a multi-layer raster object containing the remaining input variables is created using the 

stack function of the raster library. The values from the raster stack are converted into a data 

frame and combined with the extracted coordinates for each cell in the raster stack. The raster 

values are merged with the previous results based on the coordinates. Like before any rows 

containing missing values are removed, the columns containing LULC values are converted to 

character type, outliers are eliminated by calculating the fifth percentile position of the count 

values and replacing all higher values by its result. Again, the relative count value is calculated 

and used. 

When using seasonal climate data, a temporal bias is added. Fig. 6 shows that the number of 

occurrences has increased strongly since 2018. However, this is probably because more people 

have sampled than more bees being present. To consider this temporal bias, the seasonal data 

is analysed using three settings. In the first, the sightings of all years are considered. Then the 

occurrences from 2018 to 2024 are used, as the number has increased strongly here. Finally, 

a run is made exclusively with the data from 2022 and 2023, as these years had by far the most 

sightings which is additionally quite similar for both years. 

3.2.5 Fine-tuning of the model and application to the study area 

By analysing the permutation importance, statements can be made about the relevance of the 

different predictor variables in capturing pollinator habitat suitability in the study areas. To 

increase the accuracy of the model, the variables with low importance are removed from the 

training data. The selection of variables can be different for the two study areas. These are 

then simply removed from the training data frame for further computation. The aim is to re-

move data that is of minor importance so that it has no impact on the calculation. 

Removing variables can reduce the size of mtry. The hyperparameters are also adjusted in 

some cases to achieve better model performance. The reduced mtry, as well as the previous 

value of 4, is utilised. Furthermore, in addition to the default number of trees of 500, 1,000 

are tested, as this value is also frequently employed as the default in other implementations 

(PROBST ET AL. 2019). Other parameters are not tested or changed as this is not the focus of this 
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work. This means that a further four runs are carried out for both study areas based on the 

previous best practice runs. 

Finally, the hyperparameters that produced the best results are selected. The model is applied 

to assess the entire study area. In this case, the training dataset includes all occurrence data 

and the corresponding values of the input variables. A new data frame is created for the test 

data, which contains all coordinates of the input raster data with the respective values. The 

model is trained with the selected parameters and then applied to predict the created test 

data. Subsequently, a predicted count value corresponding to the training data is appended to 

the test data. The previously extracted coordinates can then be used to create a raster file that 

maps this value in the study area. 

3.3 Maximum Entropy 

Using the RF algorithm is relatively time-consuming, not only because of the preparation of 

the input raster, but also because of the preparation of the training data. To see if this approach 

is still worthwhile, the results are compared with those of Maxent. Maxent is based on the 

Maximum Entropy principle, which has become prominent in ecological applications for pre-

dicting species distributions. This principle states, from a Bayesian perspective, that the prob-

ability distribution with the highest entropy best represents the data within known constraints. 

Maxent works with presence-only data, defining its probability distribution over all pixels in 

the study area, using species occurrence pixels as sample points and their environmental char-

acteristics as explanatory variables. First introduced by PHILLIPS ET AL. (2004), Maxent has 

evolved into a well-developed stand-alone package for these purposes (GUISAN ET AL. 2017). 

Maxent utilises a list of species presence locations and a set of environmental predictors across 

a study area as input. From this landscape, Maxent extracts a sample of background locations 

where information about presence and absence is unknown and contrasts it against the pres-

ence locations (MEROW ET AL. 2013). 

For ecological applications, Maxent is presented as a general approach to modelling species 

distributions using presence-only data. It estimates a target probability distribution by finding 

the one with maximum entropy. This means that the most spread (or uniform) distribution is 

chosen without contradicting the known occurrence data and environmental constraints. The 

model provides information on the probability of the species being present at a given location 

(PHILLIPS ET AL. 2006). In ML, the maximum entropy is categorised within the classifications 

(BONACCORSO 2017). 

3.3.1 Maxent model 

The dismo package was used for the implementation of Maxent in R, as it enables Maxent to 

be run by calling Java (SILLERO ET AL. 2023). Initially, the occurrence data is loaded and its CRS is 

transformed to match that of the predictor variables. As was done previously for the RF model, 

the occurrence data is randomly split into a training set comprising 70% of the data and a test 

set comprising 30% of the data. Subsequently, the predictor variables are loaded and 
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combined with the stack function of the raster package to form a single multi-layered object. 

The maxent function enables the creation of a maxent model with the occurrence train data 

and predictor grid stack as input data. Within this function, the variables that do not contain 

continuous values can be specified. Otherwise, the default settings are used. This model is 

then applied to the study area with the predict function to predict the species distribution. The 

output is a raster file containing the prediction data of the study area. As with RF, it is possible 

to display variable importance, which is shown as a percentage (HIJMANS ET AL. 2023). 

Furthermore, Maxent is executed multiple times for the specific study areas. The initial stage 

of the process involves working with the processed raster data from the first RF iteration, 

which resulted in the optimal outcome for the RF model regarding the respective study areas. 

Subsequently, the filtered occurrence data, which has been subjected to a reduction in spatial 

bias, is also employed for Lower Saxony. However, it is not as straightforward to incorporate 

seasonal climate data in the same manner as with RF. Consequently, this step is omitted. Sub-

sequently, a reduction of input variables are also tested for Maxent. 

3.3.2 Maxent validation 

For model validation, the area under the receiver-operator curve (AUC) is employed as it rep-

resents the most prevalent metric in the Maxent literature. AUC is a metric that assesses the 

predictive accuracy of a model without relying on a specific threshold, focusing solely on the 

ranking of locations. AUC represents the probability that a randomly selected presence loca-

tion will be ranked higher than a randomly selected background point. While the AUC is typi-

cally employed to assess the efficiency of a model in differentiating between presence and 

absence locations, in the context of presence-only data, the AUC is used to evaluate the per-

formance of the model in identifying presence locations in relation to background points 

(MEROW ET AL. 2013). 

The initial step involves the generation of a set of random background points. According to the 

literature, 1,000 background points are generated from the area covered by the predictors 

using the randomPoints function (HIJMANS ET AL. 2023). The background points are employed 

as a reference point for the evaluation of the model in relation to the occurrence points. Sub-

sequently, the values of the predictors at the locations of the test occurrence points are ex-

tracted. Additionally, the predictor values at the locations of the background points are 

extracted. 

Subsequently, the previously trained Maxent model is utilised to predict the probability of spe-

cies presence at each of the test occurrence points. The resulting values are stored in a vector. 

The same procedure is then applied to the background points, with the results also stored in 

a vector. The evaluate function is used with the vectors as input, with the objective of evalu-

ating the model's performance based on the predictions made on the test occurrence points 

and the background points. This function calculates metrics such as the AUC, which can sub-

sequently be plotted.  
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4 Results 

The following chapter presents the results of the RF and Maxent models for assessing pollina-

tor habitat suitability and species distribution. For each iteration, the different settings are ex-

plained, and the resulting validation parameters are presented. It is also considered how the 

assessment of the importance of the predictor variables changes. Finally, it is shown how the 

respective models predicted the study areas of Hannover and Lower Saxony and where there 

are differences.  

4.1 Random Forest 

The RF model was further developed in several iterations. Different spatial resolutions of the 

predictor data were tested, an approach for filtering the spatial bias was tried, the periodic 

climate data was replaced by seasonal data and finally the input variables were changed and 

the hyperparameters adjusted. The following chapters show the results of the respective iter-

ations and finally the result of the prediction of the study areas. 

4.1.1 Testing different spatial resolutions 

In the first iteration, the training data for both study areas was processed at two different res-

olutions. The model hyperparameters are listed in Tab. 3, distinguishing between the study 

area and the cell size used. In addition to the defined and default settings, sample size, predic-

tion error and R2
OOB are shown. The sample size becomes smaller as the cell size increases. In 

Hannover, the prediction error for a cell size of 10 m is slightly lower at 0.051 than for a cell 

size of 50 m at 0.056. A clear difference can be seen when looking at R2
OOB. For 10 m this value 

is 0.057, while for 50 m it is even slightly negative. For Lower Saxony, the prediction errors for 

100 and 500 m are hardly different with 0.056 and 0.058. A difference can be seen when look-

ing at R2
OOB. Here the value for 500 m is higher at 0.030 than that for 100 m at 0.016. 

Tab. 3: Model hyperparameters of the first RF iteration testing different spatial resolutions 

Study area Hannover Lower Saxony 

Cell size 10 50 100 500 

Type Regression 

Number of trees 500 

Sample size 550 432 7,713 5,478 

Number of independent variables 24 

Mtry 4 

Target node size 5 

Variable importance mode permutation 

Splitrule variance 

OOB prediction error (MSE) 0.051 0.056 0.056 0.058 

R2
OOB 0.057 -0.006 0.016 0.030 
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The validation parameters are shown in Tab. 4. MAE, MSE and RMSE show lower values at a 

resolution of 10 m than at 50 m. R2 is higher than at 50 m. The SD is lower at 10 m. A cell size 

of 10 m performs clearly better than 50 m for the Hannover study area. The parameters for 

Lower Saxony are very similar. The MAE is slightly lower for 500 m and R2 is slightly higher than 

for 100 m. In summary, the 500 m cell size performs minimally better. 

Tab. 4: Validation parameters of the first RF iteration testing different spatial resolutions 

Study area Hannover Lower Saxony 

Cell size 10 50 100 500 

MAE 0.162 0.175 0.177 0.174 

MSE 0.048 0.059 0.057 0.057 

R2 0.119 0.000 0.023 0.027 

RMSE 0.219 0.243 0.238 0.239 

SD 0.216 0.243 0.238 0.238 

 

Fig. A 3 illustrates the permutation importance of the predictors of the RF model. In general, 

the predictors show a higher importance in Lower Saxony compared to Hannover, with most 

showing an increasing trend at 500 m resolution. 

For many predictors, Lower Saxony has higher importance values than Hannover. In particular, 

UA/CLC5, CLCBB, FA, NS, Aspect and NDVI have relatively low importance values in both re-

gions, with slight increases in Lower Saxony. While DisUA has no significance in Hannover, its 

value is more apparent in Lower Saxony. 

Sunshine, Precipitation, Radiation and SoilTemp show different patterns. Sunshine and radia-

tion start with higher importance in Hannover but decrease in Lower Saxony. Precipitation and 

SoilTemp have a relatively low importance in Hannover but become more important in Lower 

Saxony. 

In summary, the figure shows that most predictors have a higher permutation importance in 

Lower Saxony compared to Hannover. According to all results the cell size of 10 m works best 

for Hannover, while the higher cell size of 500 m is preferred for Lower Saxony. 

4.1.2 Testing spatial filtering 

To reduce the strong spatial bias in Lower Saxony, the occurrence data were filtered with re-

gards to settlement areas and roads. The bias grid was created for two different resolutions of 

0.02 and 0.05°. In addition, based on these resolutions, the occurrences were filtered to dif-

ferent degrees with a rescaling range of 0-1, 0-1.25 and 0-1.5. 

The spatial bias maps shown in Fig. 10 provide a visual representation of the estimated sam-

pling rate per raster cell at the two different resolutions under different rescaling values com-

pared to the unfiltered bias rasters at the top. These maps help to understand the geographical 

distribution and intensity of bias across the study area. The unfiltered occurrence data contains 
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a total of 34,681 records. With a rescale range of 0-1 this number changes to 17,859 at 0.02° 

and 17,462 at 0.05°, to 12,750 and 12,985 at 0-1.25 and to 8,109 and 8,538 at 0-1.5. 

 

Fig. 10: Spatial bias rasters showing estimated sampling rate for unfiltered and filtered occurrence data 
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At both resolutions, the unfiltered maps show the highest intensity and most scattered distri-

bution of spatial bias, with noticeable hotspots at larger settlement areas. As the rescale values 

increase from unfiltered to 0-1.5, there is a clear trend towards decreasing bias intensity and 

a more uniform spatial distribution. At a resolution of 0.02°, finer bias structures can be seen 

than at the coarser resolution, suggesting that finer resolution captures more detailed spatial 

bias patterns. The effect of rescaling is evident, as higher rescaling ranges lead to a significant 

reduction in both the intensity and number of high bias areas, resulting in a more homoge-

nised bias landscape. Higher rescaling ranges were not tested as the number of records had 

already fallen to a quarter of the original occurrences. In addition, the 1-1.5 range already 

produced a very uniform result according to the rasters. 

The model hyperparameters of the second iteration are listed in Tab. 5. The results are com-

pared with the previously best performing result from the first iteration, i.e. with a cell size of 

500 m. The prediction error decreases slightly with increasing rescale range at a resolution of 

0.02°, while it remains approximately the same at a resolution of 0.05°. R2
OOB decreases with 

increasing rescale for both resolutions. The exception is R2
OOB for 0.02° and a rescale range of 

0-1, where the value increases slightly compared to the control value. It is also clear that the 

sample size decreases with increased filtering. While the occurrence data is reduced to 25% 

with a rescale range of 0-1.5, the sample size is only reduced to a proportion of 40%. 

Tab. 5: Model hyperparameters of the second RF iteration testing different filter parameters with sampbias com-
pared to the result of the first iteration of Lower Saxony with 500 m (control) 

Resolution con-

trol 

0.02° 0.05° 

Rescale range 0-1 0-1.25 0-1.5 0-1 0-1.25 0-1.5 

Type Regression 

Number of trees 500 

Sample size 5,478 4,301 3,110 2,284 3,582 2,908 2,223 

Number of independent 

variables, 
24 

Mtry 4 

Target node size 5 

Variable importance mode permutation 

Splitrule variance 

OOB prediction error (MSE) 0.058 0.055 0.054 0.052 0.058 0.060 0.055 

R2
OOB 0.030 0.037 0.007 0.006 0.017 0.009 -0.022 

 

The validation parameters are shown in Tab. 6. At a resolution of 0.05°, MAE, MSE, RMSE and 

SD increase or remain approximately the same compared to the control value. However, R2 

increases for all variants and is highest for a rescale range of 0-1. At a resolution of 0.02°, the 

MAE, MSE, RMSE and SD increase at a rescale range of 0-1.25, while they decrease at the other 

two ranges. The 0-1.5 range performs best. R2 increases with a range of 0-1 and then decreases 
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as the range increases. While the 0-1.5 range has the best MAE, MSE, RMSE and SD, R2 is clearly 

the worst with these settings. 

Tab. 6: Validation parameters of the second RF iteration testing different filter parameters with sampbias com-
pared to the result of the first iteration of Lower Saxony with a cell size of 500 m (control) 

Resolution 
control 

0.02° 0.05° 

Rescale range 0-1 0-1.25 0-1.5 0-1 0-1.25 0-1.5 

MAE 0.174 0.168 0.183 0.161 0.178 0.175 0.174 

MSE 0.057 0.053 0.063 0.048 0.059 0.056 0.057 

R2 0.027 0.049 0.032 0.018 0.037 0.035 0.034 

RMSE 0.239 0.229 0.252 0.219 0.243 0.236 0.239 

SD 0.238 0.228 0.252 0.219 0.243 0.235 0.239 

 
Fig. A 4 illustrates the permutation importance of the RF model predictors for the different 

resolutions and rescale ranges compared to the unfiltered data. The low values for CLCBB, FA, 

NS, DisFE, DisNA, DisRA, Aspect, NDVI remain low and often decrease with increasing rescale 

range. CLC5 and DisUA also clearly lose importance with increasing rescale range, indicating 

that the spatial bias in the filtering process is decreasing. Clay, silt and sand lose slightly in 

importance with increasing rescale range. For most of the climate data the importance de-

creases when filtering the data. With higher rescale range the importance for the 0.02° in-

creases again and reaches an importance close to the unfiltered data, while that for the 0.05° 

resolution continues to decrease. 

Based on the results, it was decided to continue working with the values of a rescale range of 

0-1.5 at a resolution of 0.02°. Although R2 shows clearly poor values here, all other measures 

show the best comparative results. In addition, the losses in importance are lowest for this 

setting, and in some cases the importance even increases. 

4.1.3 Testing seasonal climate data 

In the third iteration, the effect of using seasonal climate data for the training data was tested 

for three different time periods. The model hyperparameters are listed in Tab. 7. For Hannover, 

the results are compared with those of the first iteration, where the data were modelled with 

a cell size of 10 m. For Lower Saxony, the data is compared with the second iteration using a 

resolution of 0.02° and a rescale range of 0-1.5. The results of this third iteration are also based 

on the previous results, which are presented here as comparative values. 

The periods considered are 2010-2024, 2018-2024 and 2022-2023. The sample size increases 

for both study areas and decreases as the period gets shorter. The sample size for the period 

2022-2023 is below the control values. For Hannover, R2
OOB increases and reaches its highest 

value for the period 2018-2024. It also increases for Lower Saxony but is highest for the period 

2010-2024. The prediction error decreases in Lower Saxony with a shorter time span. For Han-

nover the value partly decreases and is lowest for the period 2010-2024. 
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Tab. 7: Model hyperparameters of the third RF iteration testing the use of seasonal climate data for different time 
periods compared to the result of the first iteration of Hannover with a cell size of 10 m and the second iteration 
of Lower Saxony with a resolution of 0.02° and a rescale range of 0-1.5 (control) 

Study area Hannover Lower Saxony 

Years 
con-

trol 

2010-

2024 

2018-

2024 

2022-

2023 

con-

trol 

2010-

2024 

2018-

2024 

2022-

2023 

Type Regression 

Number of trees 500 

Sample size 550 697 672 310 2,284 3,260 2,816 1,008 

Number of inde-

pendent variables 
24 

Mtry 4 

Target node size 5 

Variable importance 

mode 
permutation 

Splitrule variance 

OOB prediction error 

(MSE) 
0.051 0.046 0.049 0.053 0.052 0.047 0.045 0.042 

R2
OOB 0.057 0.136 0.157 0.104 0.006 0.038 0.026 0.007 

 

The validation parameters of the third iteration are shown in Tab. 8. For Hannover, the MAE, 

MSE, RMSE and SD increase with the use of seasonal climate data. They are highest in 2022-

2023. The lowest values are from 2018-2024, which are only slightly different from the control 

value. For 2010-2024 and 2018-2024 R2 increases but decreases with shorter time periods. For 

2022-2023 R2 is below the control value. In Lower Saxony the MAE increases in the first two 

periods. For 2022-2023 it is only slightly below the control value. MSE, RMSE and SD all de-

crease minimally, and the values for the different time periods are almost identical. R2 in-

creases for the period of 2010-2024 and then decreases again for the shorter periods. 

Tab. 8: Validation parameters of the third RF iteration testing the use of seasonal climate data for different time 
periods compared to the result of the first iteration of Hannover with a cell size of 10 m and the second iteration 
of Lower Saxony with a resolution of 0.02° and a rescale range of 0-1.5 (control) 

Study 

area 
Hannover Lower Saxony 

Years 
con-

trol 

2010-

2024 

2018-

2024 

2022-

2023 

con-

trol 

2010-

2024 

2018-

2024 

2022-

2023 

MAE 0.162 0.165 0.166 0.178 0.161 0.168 0.170 0.158 

MSE 0.048 0.056 0.049 0.053 0.048 0.045 0.045 0.046 

R2 0.119 0.195 0.152 0.072 0.018 0.086 0.071 0.029 

RMSE 0.219 0.236 0.221 0.229 0.219 0.213 0.213 0.214 

SD 0.216 0.235 0.221 0.225 0.219 0.213 0.212 0.214 
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The permutation importance of the input variables is visualised in Fig. A 5. The study areas are 

differentiated by colour. The different time periods are shown on the x-axis next to the control 

value. In several cases, such as DTM, Slope, Precipitation, Drought, Radiation, SoilTemp and 

SoilMoist, the control values are significantly higher compared to the newer time periods for 

the Lower Saxony study area. This indicates that these predictors were more influential in the 

earlier model iterations. 

For most predictors, the permutation importance tends to decrease or remain stable over the 

different time periods compared to the control. However, there are some exceptions: CLCBB 

shows a significant increase in importance for Hannover in the period 2022-2023. Also, the 

NDVI importance becomes slightly higher with shorter time periods. For Hannover, the im-

portance tends to decrease with the seasonal climate data, but it is obvious that the period 

2018-2024 performs best, as this importance often reaches values close to the control value, 

sometimes even increasing (UA, DisFE, DisNA, DisRA, Clay, Silt, Sand, Sunshine, TempMin, Ra-

diation). In Lower Saxony, the highest importance values can be seen in the period 2010-2024, 

but most of them are not close to the control value. TempMean is the only variable with a 

noticeable increase in importance compared to the control value. 

Based on the results, the period from 2018-2024 was selected for Hannover. R2 increased while 

MAE, MSE, RMSE and SD remained almost the same. In addition, the importance for this pe-

riod has often increased or decreased only slightly. This is not so obvious for Lower Saxony. 

Although the validation parameters were slightly improved using seasonal climate data, the 

importance has generally decreased significantly. Therefore, it was decided not to work with 

seasonal data for this study area. 

4.1.4 Fine-tuning the model 

For Hannover, the work will continue with the data that have been processed with a cell size 

of 10 m and that contain seasonal climate data for the period from 2018 to 2024. To further 

improve the model, the variables with low significance are now removed. All variables with an 

importance of less than 0.002 were dropped from the model (NS, SoilTemp, DisUA, Aspect, 

Slope, FA, CLCBB, DTM, NDVI, UA). Fewer were also tried, but this gave the best result in terms 

of validation parameters. As only 14 variables were considered, mtry was automatically set to 

3. In addition, the hyperparameters were changed in further runs. An mtry of 4 and a number 

of trees of 1,000 instead of 500 were tested. 

Tab. 9 shows the hyperparameters of this fourth iteration. The prediction error increases 

slightly as the number of variables is reduced. It is lowest for a number of trees of 1,000 and 

an mtry of 3, but the others are only slightly higher. R2
OOB drops very much in some cases. It is 

highest for a number of trees of 1,000 and an mtry of 3, where it is only slightly less than the 

control value. 
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Tab. 9: Model hyperparameters of the fourth RF iteration testing less input variables and different mtry and 
number of trees for Hannover compared to the results of the third iteration with seasonal climate data in the 
period of 2018-2024 

Run Control 1 2 3 4 

Type Regression 

Number of trees 500 500 500 1,000 1,000 

Sample size 672 

Number of independent variables 24 14 14 14 14 

Mtry 4 3 4 3 4 

Target node size 5 

Variable importance mode permutation 

Splitrule variance 

OOB prediction error (MSE) 0.049 0.053 0.059 0.052 0.054 

R2
OOB 0.157 0.098 0.051 0.148 0.085 

 

Tab. 10 shows the validation parameters of the fourth iteration. MAE, MSE, RMSE and SD could 

be reduced in almost all cases by removing some of the variables. However, the differences to 

the control values are not too strong. R2 did not increase in all cases, but for the fourth run, 

i.e. an mtry of 4 and a number of trees of 1,000, it increased significantly. 

Tab. 10: Validation parameters of the fourth RF iteration testing less input variables and different mtry and 
number of trees for Hannover compared to the results of the third iteration with seasonal climate data in the 
period of 2018-2024 

Run Control 1 2 3 4 

MAE 0.166 0.153 0.157 0.159 0.158 

MSE 0.049 0.048 0.047 0.051 0.047 

R2 0.152 0.159 0.142 0.080 0.192 

RMSE 0.221 0.220 0.216 0.226 0.216 

SD 0.221 0.220 0.212 0.226 0.216 

 

Fig. A 6 shows the permutation performance of this iteration for Hannover. The control values 

from the previous iteration are also shown here. It can be clearly seen how the importance of 

all the remaining variables increases as the others are removed. While DisFE, DisNA, DisRA, 

Clay, Silt, Sand, Drought, Radiation and SoilMoist increase only slightly in comparison, Sun-

shine, Precipitation, TempMin, TempMean, TempMax show a very significant increase. The ex-

tent to which the different numbers of trees and mtrys have an effect cannot be seen directly, 

as they seem to be quite unpredictable. 

In terms of validation parameters, run 4 was selected as the final RF model for Hannover. This 

model was built using input data with a cell size of 10 m. Seasonal climate data for 2018-2024 

were used, and an mtry of 4 and a number of trees of 1,000 were selected for the model. 
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For Lower Saxony, however, it was decided not to continue working with seasonal data. There-

fore, the data was used again, with the input data processed at 500 m and then filtered with 

sampbias at a resolution of 0.02° and a rescale range of 0-1.5. Again, the low importance var-

iables were removed first. The best result in terms of validation parameters was obtained by 

removing all variables with a permutation importance of less than 0.002 (Aspect, NS, FA, 

DisNA, NDVI, CLCBB, DisFE, CLC5, DisUA, DisRa, Clay). 

Tab. 11 shows the hyperparameters of this fifth iteration. The number of variables was reduced 

from 24 to 13, resulting in a mtry of 3. Again, an additional mtry of 4 was tested, as well as a 

number of trees of 1,000 instead of 500. The prediction error has remained almost the same, 

while R2
OOB has decreased and even become negative for three runs. 

Tab. 11: Model hyperparameters of the fifth RF iteration testing less input variables and different mtry and 
number of trees for Lower Saxony compared to the results of the second iteration using a resolution of 0.02° and 
a rescale range of 0-1.5 

Run Control 1 2 3 4 

Type Regression 

Number of trees 500 500 500 1,000 1,000 

Sample size 2,284 

Number of independent variables 24 13 13 13 13 

Mtry 4 3 4 3 4 

Target node size 5 5 5 5 5 

Variable importance mode permutation 

Splitrule Variance 

OOB prediction error (MSE) 0.052 0.050 0.051 0.054 0.052 

R2
OOB 0.006 -0.014 0.000 -0.056 -0.030 

 

Tab. 12 shows the validation parameters for this iteration. MAE, MSE, RMSE and SD have al-

most all increased slightly. However, R2 could be increased in two cases. It is highest for a num-

ber of trees of 1,000 and a mtry of 4, followed by the mtry of 3. 

Tab. 12: Validation parameters of the fifth RF iteration testing less input variables and different mtry and number 
of trees for Lower Saxony compared to the results of the second iteration using a resolution of 0.02° and a rescale 
range of 0-1.5 

Run Control 1 2 3 4 

MAE 0.161 0.171 0.168 0.162 0.158 

MSE 0.048 0.056 0.053 0.049 0.051 

R2 0.018 0.016 0.006 0.029 0.030 

RMSE 0.219 0.237 0.231 0.222 0.225 

SD 0.219 0.237 0.223 0.221 0.225 
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The permutation importance for this iteration can be found in Fig. A 7. Again, all the remaining 

variables have increased in importance.  DTM, Slope, TempMin and Radiation show a slight 

but significant increase. Silt, Sand, Sunshine, Precipitation, Drought, TempMean, TempMax, 

SoilTemp and SoilMoist have in some cases almost doubled compared to the control value. In 

comparison, the importance is usually slightly higher for a mtry of 4 than for a mtry of 3. In 

addition, the importance is usually higher for a number of trees of 500 than for one of 1,000. 

Selecting the optimal setting for Lower Saxony was not a simple process. Based on R2, the 

number of trees with 1,000 was selected, and since the importance for mtry of 4 was typically 

higher, this value was chosen. 

4.1.5 Prediction of the study areas  

To predict habitat suitability within the study areas, the model which performed best was ap-

plied to each respective study area. As seasonal climate data was used in Hannover, the model 

was applied to spring, summer and autumn of one year. The year 2023 was chosen because it 

includes the most occurrences. The winter season was not considered, given that bees do not 

fly during this period. In Lower Saxony, periodic climate data was used, so this step was omitted 

for this region. In this case, habitat suitability was only predicted once. The results are shown 

in Fig. 11. 

 

Fig. 11: Results of the habitat suitability prediction using RF for the study areas of Hannover and Lower Saxony 
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Looking at Hannover, the highest values are reached in summer. While some higher structures 

can still be seen in spring, in autumn almost only low values are predicted. In summer there is 

a larger region of higher values, especially in the southern part of the area. High and low values 

can be seen for Lower Saxony. In order to be able to better evaluate the data, scatter plots 

have been created showing the predicted value achieved for each pixel and each variable for 

the four results and the associated level of the variables. The plots can be found in the Appen-

dix. 

The LULC data have been excluded from both study regions due to their limited importance. 

Additionally, information on FA and NS was also deemed to be of minimal value in both regions 

and is therefore not included as predictor data for the final models. DisUA was also removed. 

This variable served as a control value for the spatial bias, so its lack of relevance in both study 

regions is a positive outcome. The initial distinction in the selection of important predictor 

variables is evident in DisFE, DisNA and DisRA. Although these were deemed relevant for the 

area of Hannover, they were found to be of small relevance in Lower Saxony and were there-

fore excluded from the final model. In terms of their importance within the final model of 

Hannover, the three predictors are of comparatively lower value (Fig. A 6, Fig. A 7).  

Fig. A 8 illustrates the scatterplots for the selected predictor variables in Hannover during 

spring, Fig. A 9 during summer, and Fig. A 10 during autumn. A review of the data reveals that, 

in particular during the spring season, a higher prediction is more likely to be recognised with 

a low value of DisFE. The highest distances receive low prediction values in all seasons. How-

ever, in summer, the peaks in prediction are not easily assignable, as they are located between 

1,000 and 3,000 m. In autumn, the peak is at approximately 2,500 m, and otherwise, only a 

slight pattern can be observed, which generally shows a lower distance in higher prediction 

values. Regarding DisNA, the most evident pattern is observed in spring. A distinct peak is ev-

ident at a shorter distance. Overall, the prediction declines as the distance increases. In sum-

mer, the pattern is less discernible, with multiple peaks across all distances and a greater 

dispersion of values. In autumn, the trend reverses. The prediction shows a slight increase with 

increasing distance, with a single peak between 10,000 and 15,000 m. In the spring season, 

the DisRA value reaches its maximum at a distance between approximately 2,000 to 3,000 m. 

The prediction exhibits a relatively uniform decrease at distances above and below this point. 

In contrast, during the summer months, the data reveals a distinct pattern whereby the highest 

prediction values are observed at shorter distances, with a notable decline at greater dis-

tances. In autumn, the pattern is more similar to spring, but the prediction values decline more 

after the peak with greater distance. 

The next stage of the analysis considers the geomorphological predictors DTM, Slope and As-

pect. In the Hannover area, all variables were identified as having an insufficient level of im-

portance and were therefore excluded from the final model. In contrast, in Lower Saxony, DTM 

and Slope were assigned greater importance, although Aspect was not included in the final 

model as well. The scatterplot for Lower Saxony is shown in Fig. A 11. In examining the data 
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for DTM and Slope, it is evident that the highest prediction is observed at the lowest values for 

the two predictors. As the values of the variables increase, the predicted outcome declines. 

The NDVI as a variable for vegetation was assessed as having low significance in both study 

areas and was therefore not included in the final models. In consideration of the soil predictors 

clay, silt, and sand, it can be stated that all variables for Hannover were incorporated into the 

final model, despite their comparatively low importance values. In the case of Lower Saxony, 

only the clay variable was not included. A similar pattern is observed for clay in Hannover 

across all seasons. The highest predictor values are achieved with a clay content of 0.1 to 0.2. 

As the quantity in question increases, the values in question decrease. Regarding silt, it can be 

observed that the highest prediction values are achieved with an amount between 0.5 and 

0.7. It is evident that peaks can be identified across all seasons. The peak is most apparent in 

the spring and autumn months, with a somewhat less distinct appearance in the summer pe-

riod, due to the higher overall prediction values. The distribution of silt values in Lower Saxony 

is more dispersed. The highest values are observed between 0.4 and 0.7, though no distinct 

peaks can be identified. As the predicted value increases and decreases surrounding this range, 

the predicted value trends towards a decrease. A comparable pattern can be observed regard-

ing sand. In the case of Hannover, clear peaks between 0.2 and 0.3 can be identified through-

out the seasons. In the case of Lower Saxony, the values are also more dispersed, lacking clear 

peaks. However, the highest predicted values fall within the range of 0.2 to 0.5. 

The following section presents the results for the predictor variables sunshine, precipitation 

and drought. All variables were included in the final models for both study areas. In Hannover, 

the variable of sunshine achieves a very high importance value, while the variable of drought 

achieves comparatively low importance. In contrast, in Lower Saxony, precipitation and 

drought are the two highest-rated predictor variables, whereas sunshine tends to be of lesser 

importance. The seasonal climate data for Hannover was employed for these variables, which 

is the reason why the y-axes of the scatterplots of these variables differ. It is not possible to 

make a definitive statement regarding trends in sunshine levels. Although there are some 

peaks, no discernible pattern can be identified. It is evident that the predictor values for Lower 

Saxony are particularly elevated within the middle value ranges. It is similarly challenging to 

draw conclusions regarding precipitation based on the scatterplots for Hannover. However, in 

Lower Saxony, it is evident that low precipitation values have the highest predictions, which 

decrease with increasing precipitation. A comparable pattern emerges for drought. Although 

it is difficult to make a statement for Hannover, in Lower Saxony, the highest predictions are 

achieved with low drought values, which decrease with increasing drought. 

In the following step, the temperature values TempMin, TempMean and TempMax are consid-

ered. All variables were employed in both final models. While these predictors are of high 

importance in Hannover, they are of medium importance in Lower Saxony. Once more, sea-

sonal climate data was employed in the Hannover study area. The peaks for TempMin are ev-

ident in Hannover across all seasons, particularly within the medium value ranges. The 
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structure becomes more apparent in Lower Saxony. The highest predictor values are observed 

at approximately two-thirds of the TempMin range. The predictor values subsequently de-

crease around this range. Additionally, higher prediction values for both TempMean and Temp-

Max are observed in Hannover, particularly within the mid-range of the variables. In contrast, 

the data for Lower Saxony clearly show that both predictor variables have the highest predic-

tive values at the highest variable values, which decreases as the variable value decreases. 

Finally, the variables Radiation, SoilTemp and Soil Moist are considered. In the case of Hanno-

ver, the predictor SoilTemp was not included in the final model. In contrast, this variable is of 

comparatively high importance in Lower Saxony. The remaining two variables are employed in 

both models. As no seasonal climate data was available for these predictors, periodic data was 

used for both study areas. Regarding the spring season, there is an increase in radiation levels 

in Hannover as the prediction increases. This is not the case in summer, however, several peaks 

can be observed across the value range. In autumn, it is evident that the prediction increases 

slightly as the values decline. A peak is observed at approximately 14.35 kWh/m2. In Lower 

Saxony, the values exhibit greater dispersion, with a slight peak at around 14 to 14.5 kWh/m2. 

The soil temperature in Lower Saxony reaches its highest values at approximately 20 °C. The 

prediction for values above this decreases slightly, while for values below it decreases more. 

SoilMoist in Hannover appears to provide higher predictions with falling values for the seasons 

spring and summer, although peaks can be identified at the lowest and highest values for 

SoilMoist. In autumn, this peak is only present at the highest value. For Lower Saxony, the 

highest prediction values can be identified at a SoilMoist of approximately 95 to 100% NFK, 

which decreases with increasing SoilMoist. 

4.2 Maxent 

Subsequently, the outputs of the Maxent model are analysed, initially for Hannover and then 

for Lower Saxony. In this section, the significance values of the predictors in the various runs 

and the validation of the models using the AUC are considered. The prediction is also shown. 

The aim here is to create a comparison to the RF. The focus is on considering the importance 

of predictor variables and species distribution prediction. It should be noted that the validation 

cannot be compared in the best possible way, as different methods are used for the different 

models. The results are based on the optimal results previously achieved by the RF. 

4.2.1 Hannover 

The Maxent model was initially run with all predictor variables for the Hannover study area. 

As the data with a resolution of 10 m was found to be the most effective for the RF model, it 

was selected for use. The occurrence data was not filtered for Hannover, and the integration 

of seasonal data was not undertaken due to the limitations of the model. As illustrated in Fig. 

A 12, the initial run reveals that DisFE, DisNA and Sunshine, along with UA and CLCBB, attain 

remarkably high importance values, ranging from 10 to 15%. The control value DisUA is of 

minimal significance and is excluded from the subsequent run.
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Fig. 12: Prediction and AUC of the Maxent models for Hannover testing different input data in four runs
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Consequently, the importance of UA and CLCBB increases slightly in the second run. The great-

est increase is observed in the importance of DisFE, which rises above 20%. The importance of 

DisNA and Sunshine declines slightly. To test the model's performance without the LULC data, 

which were assessed as irrelevant by RF, they are also removed in the third run. Many values 

remain similar, but there is an increase in both TempMax and SoilTemp. Finally, a run is per-

formed in which FA and NS are also removed as the were not considered relevant by RF and 

based on expert opinion. Both are evaluated with approximately 5% in the third run. In the 

fourth run, some variables increase or decrease slightly, with only Sunshine increasing more 

strongly. 

Fig. 12 illustrates the spatial predictions and AUC of the corresponding runs. It can be observed 

that the AUC demonstrates an improvement from run 1 to run 2, resulting from the exclusion 

of DisUA, with a notable increase from 0.768 to 0.799. However, the removal of UA and CLCBB, 

followed by FA and NS, resulted in a reduction in the AUC to 0.751 in run 4. To obtain a more 

detailed evaluation of the prediction values, the range of values for the four runs is presented 

as boxplots in Fig. 13. An examination of the prediction maps for runs 1 and 2 reveals a slight 

shift in the range towards the lower end, which is corroborated by the boxplots. Furthermore, 

there is an increase in the value range for runs 3 and 4. Additionally, run 4 exhibits a more 

homogeneous study area with a reduction in discontinuous areas. 

 

Fig. 13: Prediction ranges of the Maxent models for Hannover testing different input data in four run 

4.2.2 Lower Saxony 

In the case of the Lower Saxony study area, Maxent was initially applied to the unfiltered oc-

currence data based on the Predictor raster files with a cell size of 500 m. An examination of 

the Importance values in Fig. A 13 reveals that DisUA reaches approximately 65%, which indi-

cates a markedly high spatial bias in the data. Subsequently, the filtered occurrence data with 

a resolution of 0.02° and a rescale range of 0-1.5 was applied in the second run. It can be 

observed that the importance of DisUA exhibits a slight decline yet remains at a notably high 

level of 60%. Consequently, this variable was excluded from the model in the third iteration, 

as it serves only as a control value. It is evident that CLC5 but also CLCBB, become significantly 
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more important in the third run. The LULC data demonstrated minimal relevance in the RF 

model. Therefore, in the fourth run, a model was constructed without the two LULC data as 

predictors. It can be observed that FA and NS become considerably more relevant. These var-

iables are based on expert opinion and are linked to the CLC classes. They are also irrelevant 

in the RF model. A fifth and final run was conducted in which these variables were also ex-

cluded. In this run, the importance values are somewhat more evenly distributed. Drought, 

SoilMoist and Slope in particular achieve higher values here. 

To gain a more detailed insight into the outcomes of the five runs, the prediction results and 

the AUC are presented in Fig. 15. In run 1, the unfiltered occurrence data was utilised, resulting 

in an AUC of 0.834. The application of filtering to the data resulted in a slight increase in the 

AUC, reaching 0.842. It may be assumed that the filtering of the data has a beneficial effect on 

the model, despite the reduction in the number of occurrences. In the subsequent three runs, 

predictor variables were removed. As a result, the AUC decreased due to the removal of the 

control value DisUA. In the fourth run, the two previously very important LULC data, CLC5 and 

CLCBB, were removed. Consequently, the AUC continued to fall. In the final run, FA and NS 

were removed, resulting in a further decrease in the AUC to 0.789. 

Upon examination of the prediction, it becomes evident that the outcome of runs 1 to 2, with 

the filtered data, exhibits a more pronounced contrast. This indicates that the number of val-

ues within the middle range is reduced, while the number of low prediction values is increased. 

A visual inspection of the prediction ranges in Fig. 14 provides further confirmation of this 

hypothesis, with a clear shift in distribution towards the lower range. As variables are removed, 

the value range increases again. Furthermore, run 5 reaches even higher values than run 1. 

However, the result of the mapped prediction differs significantly from that of run 1. The result 

of run 5 appears more uniform and without abrupt transitions, whereas the initial run appears 

more discontinuous. 

 

Fig. 14: Prediction ranges of the Maxent models for Lower Saxony testing different input data in five runs 
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Fig. 15: Prediction and AUC of the Maxent models for Lower Saxony testing different input data in five runs 
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5 Discussion 

This thesis presents the development of a RF modelling approach for the assessment of polli-

nator habitat suitability in the study areas Hannover and Lower Saxony. While the primary 

focus was on the RF modelling approach, the study areas were also modelled with Maxent to 

enable a comparison to be made. Initially, the Maxent modelling approach appears to be more 

straightforward than the RF method. The model has been implemented in the R software pack-

age dismo in such a way that it is highly user-friendly and can therefore be rated as very com-

prehensible. The GBIF data can be incorporated into the function as downloaded, as the model 

has been designed to work with this kind of presence-only data. The generation of background 

points is a fully automated process. It should be noted, however, that the default settings have 

been employed in the majority of cases. A greater number of settings can be made when using 

Maxent to enhance the quality of the model. In comparison, the creation of the RF model with 

the ranger package was more complex, but still easy to use. RF was not developed to capture 

habitat suitability, but it remains an effective tool for this purpose. The main challenge was 

preparing the training data accordingly. A further point for consideration was the preparation 

of the input predictor variables. The variables were required to be prepared as raster data for 

both approaches over the same extent, with the same CRS and spatial resolution. The process 

of searching for and preparing the data proved to be time-consuming, yet it was a uniform 

procedure for both modelling approaches. 

In this thesis, an approach was taken to assess the degree of suitability through the density or 

abundance of species, due to the lack of absence data and the weaknesses of pseudo-ab-

sences (DŽEROSKI 2009; GUISAN ET AL. 2017). A regression approach was developed, where a grid 

was generated and the number of occurrences in each cell was quantified and relativised, serv-

ing as the target variable for the model. When modelling occurrence density, it is important 

that the probability of detecting an individual when the species is present is the same for the 

entire study area in order to obtain a reliable abundance estimate (PEARCE & FERRIER 2001). It is 

unlikely that this is the case when using GBIF data. However, the bias inherent in GBIF data is 

also problematic when modelling presence and absence data and was attempted to be mini-

mised by removing outliers and filtering the data. 

As no comparison was made between the recording of occurrence density and the creation of 

background or absence points for RF, it is difficult to make a statement about the suitability of 

this method. However, it does have some advantages. This method allows the model to fit the 

data, rather than the other way around (WARTON & SHEPHERD 2010). The preparation of the 

training data is easier, as the way in which the background points are created can strongly 

influence the result and many settings must be tried and tested (BARBET-MASSIN ET AL. 2012). 

While there are evident advantages to modelling relative occurrence density, the applicability 

of this approach for HSM based on GBIF data remains uncertain due to the spatial bias inherent 

in the data. Specifically, the occurrences can be underrepresented in areas of high abundance 

and overrepresented in areas of low abundance (GOMES ET AL. 2018). In addition to the 
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clustering of occurrence data in specific locations, the absence of a standardised sampling de-

sign further complicates the interpretation of the data (GUISAN ET AL. 2017). For further re-

search, it would be useful to investigate the comparison of modelling presence points and 

relative density, as it has not yet been considered in HSM with RF using GBIF data. 

A comparison of the performance of the RF regression model and the Maxent classification 

model for the assessment of habitat suitability is inherently challenging due to the fundamen-

tal differences in their methods and the validation metrics applied to each. The RF model, 

which is based on a regression approach, was evaluated using a series of continuous perfor-

mance metrics, including MAE, MSE, R², RMSE and SD. These metrics provide insight into the 

accuracy of the model in predicting continuous habitat suitability scores (CHICCO ET AL. 2021). 

In contrast, the Maxent model, which is based on a classification approach, was validated using 

the AUC, a metric that assesses the model's ability to distinguish between suitable and unsuit-

able habitats (MEROW ET AL. 2013). This contrast in evaluation techniques demonstrates the 

difficulty of making a direct comparison between the two models, as each set of metrics fo-

cuses on different aspects of model performance. Consequently, while the RF model provides 

a comprehensive evaluation of prediction accuracy across a range of values, the Maxent model 

offers a statistical interpretation of habitat suitability that is particularly suited to binary clas-

sification tasks. Accordingly, any comparison of these models must be made with considera-

tion of their inherent strengths and limitations. 

By fine-tuning the parameters, an R² value of just under 0.2 was achieved for the Hannover 

study area. Although this still indicates that the fit of the model is rather trivial (CHICCO ET AL. 

2021), the value is still much higher than that of the Lower Saxony study area, where an R² of 

just over 0 was achieved. The values for MAE, MSE, RMSE and SD are not very different for the 

two study areas. In contrast, an AUC of 0.75 to 0.80 was obtained using Maxent for Hannover, 

depending on the setting. Values of 0.79 to 0.84 were achieved for Lower Saxony. The model 

fit was therefore higher for Lower Saxony than for Hannover, in contrast to RF. The study area 

of Hannover was selected for analysis due to the relatively low spatial bias observed in the 

occurrence data. The bias is particularly evident when highly populated areas are compared 

with their surroundings. Consequently, the higher R² value for the RF model in Hannover may 

indicate improved model fit when the spatial bias is minimal. Nevertheless, the results indicate 

that Maxent is performing significantly better than RF. 

The fit of the Maxent model can be interpreted as fair to good or useful (GUISAN ET AL. 2017). It 

should be noted, however, that Maxent models are generally prone to overfitting (PHILLIPS ET 

AL. 2006). While the AUC provides a discrimination measure for all possible ranges of thresh-

olds and corresponds to the probability that a presence has a higher predicted value than an 

absence (LOBO ET AL. 2008), it does not quantify overfitting (RADOSAVLJEVIC & ANDERSON 2014). It 

is therefore possible that a poorly fitted model may still demonstrate good discriminatory 

power as a result of overfitting (LOBO ET AL. 2008). It can be assumed that there is an overfitting 

effect, given that the importance values demonstrated strong relevance in the LULC data and 
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FA and NS when modelling with Maxent (BORIA ET AL. 2014). In contrast, this was not the case 

when modelling with RF. 

Another potential explanation for the notable differences between the validation metrics of 

the two models is the utilisation of relative abundance data for RF and presence point data for 

Maxent. The results differ significantly in terms of both the validation parameters and the 

model fit, as well as in terms of prediction. To achieve a more accurate comparison, it would 

be beneficial to perform the RF modelling additionally with the incorporation of background 

points. The comparison of the results with Maxent in this thesis, as a commonly used model, 

is interesting but poses significant interpretation challenges. It should also be noted that the 

dataset is not optimal despite the filtering. The GBIF data exhibit a high degree of spatial bias, 

which has limited the scope for creating a model with a good fit. Instead, the aim has been to 

enable and test new approaches for calculating and evaluating pollinator habitat suitability. 

To facilitate a comparison of the results of the HSM, the predictions presented in Fig. 16 for 

Hannover are displayed in a side-by-side format. The prediction with RF is presented for the 

summer of 2023, given that this is the period during which the bees are most abundant. Two 

runs were selected for Maxent. In the second Run, DisUA was excluded from the modelling 

process, while in the fourth Run, the LULC data, FA and NS were also removed. The top row 

depicts the results for the entire study area. The second row presents a section of the northern 

tip of the Hannover study area, predominantly comprising arable land and pastures, as well as 

urban fabric and forest areas. The third row illustrates a section of the southern part of the 

area, including the waterbody Maschsee. To the east of the lake is a forest area, and to the 

west are urban fabrics. Additionally, the right-hand column illustrates the value ranges of the 

predictions, which correspond to the order in which they are displayed. 

The most obvious difference between the predictions is that the structures of the LULC data 

are still very present in Maxent. These structures can also be seen in run 4, where they are 

probably based on the NDVI, which also shows a higher relevance in the modelling. The pre-

diction grid appears much more homogeneous from run 2 to run 4, but in contrast the predic-

tion grid of RF is much more uniform, and no hard edges can be seen. It remains questionable 

how accurate these structures in the Maxent predictions are and whether they really exist in 

nature. While there can be some impassible barriers that create hard edges for certain species, 

there tend to be more soft edges with habitat quality that declines continuously (WATTS ET AL. 

2024). Looking at the full extent value ranges, there is a clear difference. Maxent's values are 

much more spread out over the whole range from 0-1. RF, on the other hand, only has values 

between 0.2 and 0.6. The average of all ranges is around 0.35-0.45. This pattern supports the 

hypothesis that a different distribution arises between the two models and their approach to 

describing habitat suitability based on species abundance and occurrence. In the case of RF, 

there is abundance throughout the area, but it is less dense in some areas and denser in oth-

ers. There are no locations within the area where the prediction is 0. This is likely because no 

positions without occurrences were included in the training data of the RF modelling. It would 
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have been beneficial for the model to include absence points in order to achieve a higher var-

iation of the values. However, this would have involved the creation of pseudo-absences, 

which could have introduced new uncertainties (BARBET-MASSIN ET AL. 2012). 

It is also noticeable that the Maxent results show many high values in the inner part of the 

study area, i.e. where the urban fabric is present. Forest and agricultural areas on the edge 

tend to have low values. For RF, higher values can be seen in the outer areas. In order to pro-

vide a more detailed and comprehensive analysis of the results, the two sections of the study 

area were subjected to a more in-depth examination. An inspection of run 2 of the first extent 

in the northern area reveals not only the distinct structural characteristics of the various LULC 

types, but also the delineation of forest edges. Nevertheless, it is evident that the forest edges 

are assigned a relatively low rating, whereas the forest core is rated higher. The agricultural 

areas were assigned a low rating, whereas the urban fabric was rated highly. This effect is di-

minished by the exclusion of the LULC, FA and NS data, yet the structures remain visible. A 

comparison of these results with the expert opinions on the availability of flowering plants and 

nesting sites for pollinators in the ESTIMAP model based on CLC data (ZULIAN ET AL. 2013) raises 

questions about the reliability of the Maxent results, particularly given the high prediction of 

urban fabric. The low prediction for arable land is in line with the literature, as important ara-

ble wild plants have been lost to intensification of arable farming, and with them the liveli-

hoods of many bees (WESTRICH 2019; ZULIAN ET AL. 2013). The natural grassland, which is 

moderately scored by Maxent, receives one of the highest ratings for flowering plant availabil-

ity and nesting site availability in ESTIMAP and is generally very important to many bees as 

there are many pollen sources available. The rating of forest edges having a lower predictive 

value than forest cores is questionable, as this finding contrasts with the existing literature, 

which describes forest edges in particular as suitable habitats for bees. (WESTRICH 2014; ZULIAN 

ET AL. 2013). The low prediction for the small lake in the north-east of extent 1 is reasonable, 

as the water bodies themselves are not suitable (HINSCH ET AL. 2024; ZULIAN ET AL. 2013). 

It is not possible to make any definitive statements regarding the results obtained with RF. The 

overall rating for this area was slightly higher, at approximately 0.4, in comparison to the rating 

for Maxent, which was approximately 0.3. Furthermore, the values exhibit minimal dispersion, 

spanning a range of 0.3 to 0.5. Only slight differences are evident in the area. While the Maxent 

results may not completely align with existing literature, it remains unclear whether those of 

RF are more meaningful in this context. However, it appears that RF is less susceptible to the 

spatial bias of the occurrence data. The occurrences were more frequent in the city core than 

in the outer parts, which may have led to the urban fabric being rated so highly by Maxent. 

This phenomenon is not present in RF. 
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Fig. 16: Comparison of the predictions of the RF and Maxent models for Hannover
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A review of the second section of the Maxent results shows that the water area is rated very 

low in both cases, a finding that is consistent with literature that rates water bodies as unsuit-

able (ZULIAN ET AL. 2013). The forest area and the natural grassland to the west of the lake were 

assigned low ratings in run 2 but higher ratings in run 4. However, the forest edges are not as 

clearly delineated as in the first section. Furthermore, it is evident that urban fabric achieves 

exceptionally high values in this section. In general, the area is distinguished by Maxent with 

remarkably high prediction values, averaging 0.7. In contrast, RF exhibits an average of 0.4, 

with instances where values reach up to 0.6. It is therefore slightly more scattered than in the 

previous section. The literature indicates that urban areas are typically not deemed suitable 

for nesting but offer certain floral resources (ZULIAN ET AL. 2013). Some of the bees native to 

Germany occur in urban habitats, particularly as natural habitats are being lost in intensively 

farmed areas. It should be noted, however, that there are certain species that cannot survive 

in urban environments due to their specific ecological requirements (WESTRICH 2019). Never-

theless, studies have demonstrated that bees exhibit high species richness and elevated flower 

visitation rates in urban environments. This underscores the potential of well-managed cities 

to serve as vital pollination hotspots for urban crops and wildflowers (THEODOROU ET AL. 2020). 

Still, the high assessment of the urban area by Maxent remains questionable and may be in-

dicative of overfitting and it can be assumed that Maxent is more susceptible to spatial bias. 

In contrast, the RF analysis did not identify any structures that have emerged from LULC since 

these variables were not rated as important. 

The same analytical approach was employed for the predictions for Lower Saxony, as illus-

trated in Fig. 17. Run 3 was selected for Maxent, which was executed with the filtered occur-

rence data and without DisUA as input. Additionally, run 5 was selected, in which LULC, FA and 

NS data were also removed. Again, two further sections were selected for analysis. The first 

area of interest is in the north-western region and is characterised by extensive agricultural 

LULC, including arable land and pastures. The area also encompasses some peat bogs and the 

town of Oldenburg, which is situated in the north-eastern part of the section. The southern 

half of the region is characterised by the presence of coniferous forest areas. To the north-

east, the river Ems is located. The second section of the study covers the Hannover region. The 

south-western section includes the city centre and the Deister hill chain. Additionally, the two 

smaller towns of Celle and Peine are included in this extent, and a part of the city Braunschweig 

is covered in the east. The northern area is characterised by coniferous forest, whereas the 

southern part is increasingly defined by the dominance of arable land and pastures. 

Upon initial observation, it is evident that the value ranges exhibit a considerable degree of 

variation. The RF predictions are markedly lower and show minimal dispersion, whereas those 

of Maxent display a notable increase from run 3 to 5. This discrepancy is less prominent for 

extent 1 and more evident for extent 2 than for the full extent. This pattern has already been 

observed in the Hannover study area. It seems reasonable to assume that the difference be-

tween the models is caused by the different target variables. 
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Fig. 17: Comparison of the predictions of the RF and Maxent models for Lower Saxony
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The results of run 3 of the Maxent modelling clearly demonstrate that settlement areas were 

assigned a high rating. This phenomenon is particularly evident in the full extent at the large 

cities but is also visible in extent 1 and 2. In addition to the large cities, numerous smaller 

structures with a high prediction are situated on settlement areas. The removal of the LULC 

data in run 5 serves to diminish the visibility of these structures, yet the regions themselves 

remain prominent. As the prediction generally increases from run 3 to 5, the urbanised areas 

are rated even higher than before. As it was the case with Hannover, it is evident that the sharp 

edges of the prediction are fading and becoming softer. In line with the previous results, pas-

tures and arable land are typically assigned lower ratings. It is notable that forest areas that 

are well suited to the environment, such as those in the southern part of extent 1, are not 

identified as such by the model. It is assumed that there is an issue of overfitting due to a 

spatial bias in the occurrence of the urban fabric, which is reflected in the high prediction val-

ues. In contrast to the study area of Hannover, where water areas were assigned a very low 

prediction, watercourses are given a higher rating in the modelling of Lower Saxony with 

Maxent. While the riparian areas are important habitats for pollinators, the water areas them-

selves are not suitable (WESTRICH 2014, 2019; ZULIAN ET AL. 2013). The Maxent model identifies 

the elevation of the Deister and distinguishes it from its surrounding area, with a lower pre-

dicted value. Given the observed decline in temperature and increase in precipitation at this 

elevation, the prediction is consistent with the existing literature, which indicates that the ma-

jority of wild bees require sunlight, warmth, and dry conditions to thrive (WESTRICH 2019). 

An examination of the predictions derived from RF modelling also reveals the presence of var-

ying structures, yet no discernible patterns that can be attributed to LULC. This is because the 

modelling process did not incorporate data from LULC, FA and NS, nor NDVI. Of particular sig-

nificance were the bioclimatic variables, the elevation model and soil composition. At extent 

1 and 2, a small number of grid cells can be identified that exhibit exceptionally high prediction 

values yet display notable contrasts to their surrounding areas. It seems reasonable to posit 

that these cells were included in the training dataset and that the assignment of higher relative 

abundance data was more straightforward in these locations. This is particularly true given 

that these grid cells are situated in urban areas, which often exhibited a high abundance in the 

occurrence data. Consequently, it can be concluded that although RF is generally not suscep-

tible to the spatial bias of the occurrence data and does not typically rank urban areas highly, 

structures can also be identified here that are associated with the training data. 

In general, it can be concluded that Maxent is highly sensitive to spatial bias in occurrence 

data, resulting in both overfitting of LULC data and overestimation of urban areas, despite the 

data having gone through a filtering process. This phenomenon is not observed in RF, where 

only isolated structures of the training data can be identified. It would be beneficial to addi-

tionally verify the results with sampling data collected in a standardised sampling design, given 

that the GBIF data is subject to a significant degree of bias. 
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The process of filtering GBIF data in order to minimise spatial bias represents a crucial step in 

the modelling process, with the potential to significantly enhance the quality of HSM. One 

proven method is to rasterise the study area and randomly select a maximum number of rec-

ords per raster cell. Another is to select a radius within which a maximum of 1 record may be 

present. Both methods are similar and result in a reduction of occurrence data, but at the 

same time have been able to improve the quality of the model, e.g. to better predict less sam-

pled areas (BECK ET AL. 2014; BORIA ET AL. 2014; KRAMER-SCHADT ET AL. 2013). 

In general, high outliers were removed when generating the training data for RF modelling. 

The R package sampbias was used to further refine the method. Rasters were created showing 

the sampling bias in relation to roads and settlement areas, as it is assumed that a higher sam-

pling rate can be expected due to the accessibility and higher population in these locations. It 

was shown that there is a clear bias in the bee occurrence data in Lower Saxony. The occur-

rence data were filtered based on these rasters. Grid cells with a high sampling bias were fil-

tered accordingly and conversely those with a low bias were filtered little or not filtered at all. 

This allowed even more targeted filtering of the data. 

In this filtering process, different resolutions of the sampling grid were tried, as well as differ-

ent rescale ranges to adjust the intensity of the filtering. This step proved to be useful as it 

resulted in noticeable differences. The highest rescale range was chosen as it produced the 

most uniform result in relation to the rasters, but at the same time removed the most occur-

rence records. The quality of the RF model could be improved by the filtering process in terms 

of the validation parameters. In the case of Maxent, the AUC also showed that filtering brought 

a slight improvement, although only about a quarter of the original occurrence records were 

used for further modelling. At the same time, no clear statement can be made about the res-

olution and rescale ranges used. These should be tested depending on the data basis, study 

area and number of records in order to select the best option for the model.  

Filtering the data not only significantly reduced the number of occurrence records, but also 

the sample size of the training data. The aim would be to adjust the filter function so that the 

sample size is not reduced too much despite the removal of records, as a larger sample size is 

usually better for model quality (JUNG 2022). This could be achieved by specifying an even 

lower resolution when creating the bias raster. The results have shown that the number of 

records removed is significantly affected by the rescale range. The sample size, on the other 

hand, is more clearly influenced by the resolution. Further investigation using a lower resolu-

tion might also provide clearer results regarding the validation parameters. 

The importance values can also be used to make statements about the filtering process. DisUA 

was included as a control measure to provide information on the spatial bias. The importance 

of this predictor was significantly reduced by increasing the rescale range when modelling with 

RF. CLC5 also became less relevant because of filtering. CLCBB, FA and NS were already of low 

importance but were reduced to almost zero by filtering. The importance values of the Maxent 
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model show similar results for DisUA. However, this variable is rated much higher and even if 

it loses relevance through filtering, this value remains the highest rated. 

The reduction in the relevance of DisUA in both models through spatial filtering shows that 

this process worked in terms of reducing spatial bias due to proximity to roads and settlement 

areas. Spatial filtering can reduce overfitting by addressing spatial biases in occurrence data. 

These biases often arise from geographic clustering of sampled localities, which can cause 

models to overfit to specific environmental features associated with these clusters (BORIA ET AL. 

2014). Filtering helps to minimise such biases, resulting in a model that is less influenced by 

localised environmental variables such as those represented by LULC datasets such as CLC5 

and CLCBB. It is important to reduce spatial clustering in occurrence data to improve model 

calibration, especially if there is a strong sampling bias towards certain LULC types (KRAMER-

SCHADT ET AL. 2013). The reduced importance of LULC variables in the RF model after filtering 

may be a direct result of such spatial bias reduction, supporting more robust and generalisable 

model predictions. One explanation for the fact that DisUA and also the LULC variables were 

rated much higher in the Maxent model than in the RF model is that Maxent is more prone to 

overfitting than RF (CUTLER ET AL. 2012; PHILLIPS ET AL. 2006). 

It is important to note that when filtering spatially, the presence of spatial clustering may be a 

factor for certain species with limited distribution ranges. The removal of this ecological signal 

would result in a weakening of the prediction (KRAMER-SCHADT ET AL. 2013). As all bee families 

were considered in this case, this is an insignificant factor. However, it should be considered 

when modelling certain species. 

While sampbias has been established to represent the sampling bias in study areas (BOGONI ET 

AL. 2022; POESTER-CARVALHO ET AL. 2023), the features of this package have not yet been used to 

reduce this bias. This thesis has shown that this method can be a successful approach to filter 

the bias in relation to, e.g. roads and settlement areas, as the quality of the model can be 

improved further in addition to removing the outliers. 

One advantage of RF over Maxent is that, in addition to periodic climate data, more specific 

data can be incorporated. The results have demonstrated that, while this does not necessarily 

result in an improved model, it can still be advantageous for certain applications. This includes 

the analysis of habitat suitability in a changing climate or the estimation of flight times for 

specific bee species. In the case of Maxent, a model needs to be created for each period of 

climate data used, with the occurrence data for the corresponding period incorporated into 

the training process. In contrast, when using RF, a model can be created with all occurrences. 

The climate data only needs to be attached to the corresponding occurrence. This model can 

then be projected onto the data for different time periods, as demonstrated in the Hannover 

case study presented in this thesis. The method of utilising a trained model on additional cli-

mate data is frequently employed in the assessment of species distribution in future climate 

scenarios (RAHIMI ET AL. 2021). 
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Finally, it was determined which input variables are highly relevant in the model and therefore 

also for HSM. As the focus of this thesis has been on modelling with RF, the importance of the 

RF models will be primarily evaluated in the following. The first input parameters were the UA 

for Hannover and the CLC5 for Lower Saxony as LULC datasets with many classes and addition-

ally the CLCBB for both study areas as LULC dataset with few classes. It is interesting to note 

that the LULC data were not considered important for RF modelling, as these data form the 

basis for many process-based models and were also considered most important by Maxent. It 

has already been concluded that this is a result of overfitting due to the bias of the occur-

rences. It is therefore even more interesting that RF does not consider either a few or many 

LULC classes to be important. This result could lead to a completely new approach of modelling 

pollinator habitat suitability. In any case, this is supported by the fact that LULC itself often 

does not provide information on whether corresponding nesting and foraging resources are 

available for bees (WESTRICH 2014, 2019). HINSCH ET AL. (2024) addressed this issue by including 

ecosystem condition in their ESTIMAP-based HSM in the Hannover region. For further re-

search, it would be interesting to consider this ecosystem condition as an input variable for RF. 

A similar picture emerges from the analysis of FA and NS. The expert-based assessment of food 

and nesting resources for bees is classified as unimportant in the RF modelling. In Maxent, 

however, they are more important, especially in Lower Saxony. A similar behavior as with the 

LULC data is observed, since the expert assessment is based on the same CLC classes. 

The next parameters are the distance-based variables DisFE, DisNA and DisRA regarding forest 

edges, natural areas and riparian areas. In Lower Saxony, these were not considered important 

with RF, while they are more important in Hannover. The reason for this could be the different 

resolution of the input data for the two study areas. The forest edges were calculated with a 

width of 50 m and the riparian areas with only 25 m. The spatial resolution for Lower Saxony 

was 500 m, so these small structures are not noticeable here, whereas they are much more 

obvious in Hannover with a resolution of 10 m. The results also showed that smaller distances 

from riparian areas, forest edges and natural areas tend to have higher prediction values, 

which is in line with ESTIMAP's expert opinion (ZULIAN ET AL. 2013). DisUA as distance to settle-

ments was considered unimportant by RF, again indicating firstly that the filtering process to 

remove spatial bias was successful and secondly that there was no overfitting regarding set-

tlements. 

The following input variables were the geomorphological data, DTM, Slope, and Aspect. In 

Hannover, all three variables were deemed to have minimal importance. However, in Lower 

Saxony, both DTM and Slope were identified as significant factors. One potential explanation 

for the lack of importance attributed to these parameters in Hannover is the relatively limited 

range of altitudes within the city, in comparison to the more pronounced elevation gradients 

observed in the south of Lower Saxony. At Maxent, only Slope was of greater importance in 

both study areas. The decline in temperature and increase in precipitation that occurs with 
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elevation, coupled with the fact that the majority of wild bees require sunlight, warmth, and 

dry conditions to thrive, explains the lower predictions in this area (WESTRICH 2019). 

The NDVI was classified as unimportant in both study areas by the RF model. The index is used 

to characterise the productivity of plant communities. HONCHAR (2020) found that higher NDVI 

was associated with significant flower diversity and high diversity of wild bees. In this case, a 

mean NDVI over a longer time period was used. It may be beneficial to test more precise data, 

for example, covering the NDVI during the bees' flight times. 

The subsequent variables comprise data characterising the soil texture, specifically the pro-

portions of Clay, Silt and Sand. Except for Clay in Lower Saxony, all proportions were identified 

as important in both study areas through the use of RF modelling. The importance of soil tex-

ture in Maxent modelling was relatively low. Soil texture is a relevant factor for bees, as many 

wild bee species are soil nesters. Bees are often associated with sandy soils, but there are 

significant differences in the preferences of different species (ANTOINE & FORREST 2021). How-

ever, the scatterplot for Lower Saxony indicates a trend whereby sandy soils tend to have 

higher prediction values, which would support this assumption. More precise results would 

likely be obtained if specific bee species with similar nesting behaviours were modelled. 

The climate data, including Sunshine, Precipitation, Drought, TempMin, TempMean, TempMax 

and Radiation, were identified as important for both study areas in the RF modelling and were 

assigned the highest values. While Precipitation and Drought were identified as particularly 

important in Lower Saxony, Sunshine and TempMax were found to be more significant in Han-

nover. This difference may be attributed to the handling of seasonal climate data, as Precipita-

tion and Drought exhibited greater importance before incorporating seasonal climate data. 

The most evident patterns in the scatterplots were observed in Lower Saxony. Here, the high-

est temperatures were associated with the highest prediction values, while low precipitation 

and drought were correlated with high predictions. Additionally, a trend emerged for Radiation 

and Sunshine, where higher values tended to generate higher predictions. These findings align 

with the existing literature, which indicates that bees prefer warm temperatures, dry condi-

tions, and sunshine (ANTOINE & FORREST 2021; WESTRICH 2019). 

The final two variables, SoilTemp and SoilMoist, describe the temperature and moisture of the 

soil. In Lower Saxony, both parameters are of significance when modelling with RF. In Hanno-

ver, however, only SoilMoist is of importance. One possible explanation for this observation is 

the relatively small differences in Hannover. Most ground-nesting bees have a preference for 

soil with a well-drained but not excessively dry composition. This finding is supported by the 

scatterplots, which indicate that lower SoilMoist values result in higher prediction values. Ad-

ditionally, the influence of soil temperature on soil-nesting bees is evident, with warmer tem-

peratures positively affecting adult bee activity and the development rate and survival of bees 

in the larval stage (ANTOINE & FORREST 2021). This is validated by the low SoilTemp values, which 

correspond to the lowest prediction values. 

 



Discussion 

 57 

The results demonstrated that RF, in contrast to Maxent, does not exhibit a pronounced re-

sponse to the spatial bias inherent in the occurrence data sourced from GBIF. Consequently, 

the phenomenon of overfitting was not observed. The strategy of filtering the occurrence data 

using a bias grid was effective and represents a method for filtering the occurrence data with 

greater specificity, thereby providing the optimal data foundation. It is important to 

acknowledge that the spatial bias still had a significant impact on the RF modelling, which ul-

timately prevented the achievement of a satisfactory model fit. Nonetheless, the results of the 

RF modelling are largely in line with those reported in existing literature. It can be concluded 

that the use of HSM of pollinators with RF represents a robust approach to avoid the issue of 

overfitting due to the spatial bias of GBIF data. 

It must be acknowledged that the research design of this thesis is subject to limitations. Alt-

hough the selection of species density instead of modelling background points was a reason-

able approach, it resulted in a more challenging comparison with Maxent modelling. In fact, 

Maxent could only be used as a rough comparative value. A more targeted approach would 

have been to also include RF modelling using background points. A comparison between the 

two RF modelling approaches would be as valuable as the comparison with Maxent and should 

be considered in subsequent research. 
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6 Conclusion 

The application of RF to model the habitat suitability of pollinators has been demonstrated to 

be an effective approach, employing GBIF occurrence data, which is characterised by a high 

spatial bias and thus stands out from Maxent, which is prone to overfitting. Whether the mod-

elling of occurrence density is more effective than the use of background points remains to be 

investigated. Despite the inability to achieve a satisfactory model fit, the prediction results are 

a promising indication of the potential of this approach. 

This thesis presents a methodology for assessing the habitat suitability of pollinators in Lower 

Saxony and Hannover, based on the use of a RF model. The model was constructed using a 

variety of data on LULC, geomorphology, vegetation, soil and bioclimate, which were collected 

and processed in a uniform raster format. Furthermore, the GBIF database was utilised to 

gather presence-only occurrence data of bees. The occurrence data were employed in the 

construction of the training dataset for the model, which was represented as relative density 

of occurrences. The RF model was then further developed in various iterations. Different res-

olutions for the training data were tested, an approach to filter the occurrence data to remove 

the spatial bias, the inclusion of more temporally resolved climate data and then a fine-tuning 

of the model was applied. The final model was used to predict the corresponding study areas 

in terms of habitat suitability for pollinators. To enable a comparison, the same input data was 

used to create a prediction using the Maxent model. 

The first research question to be answered in this thesis was how pollinator habitat suitability 

is assessed in the study areas using a ML approach. While Maxent focused intensively on the 

LULC data due to overfitting regarding urban areas, resulting in very hard edges and an over-

valuation of settlement areas, RF was able to produce a more homogeneous result in which 

these structures were not identified again. However, the use of relative occurrence density 

results in a narrow range of predicted values. An area-wide abundance was determined, 

though within the lower range. Including locations with absences in the training data may fa-

cilitate the extension of the range and the achievement of a more pronounced variation across 

the area in question. The model fit of RF was trivial, yet it still provided useful results that could 

be built upon. Maxent obtained a good fit but was affected by overfitting. The potential of 

integrating climate data with a higher temporal resolution into the RF model was found to be 

advantageous in certain cases, but it does not necessarily result in a superior model. 

Furthermore, it should be explored how the spatial bias in the occurrence data can be reduced 

and how this affects the modelling. Although the filtering of heavily clustered occurrence data 

to reduce spatial bias is a common approach, a method was developed for performing this 

filtering in a more targeted way. The bias raster, created in relation to roads and settlement 

areas, enabled the bias to be represented in its distribution and subsequently filtered accord-

ing to this raster. This approach facilitated the identification of locations with a high bias, which 

were then filtered accordingly. The filtering had a positive effect on the modelling for both RF 
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and Maxent, as showed by an improvement in the validation parameters despite the greatly 

reduced number of occurrences. 

Finally, it should be determined which input variables are highly relevant in the model and 

therefore also for HSM. The bioclimatic variables achieved highest importance when modelling 

with RF. It became evident that a high prediction was achieved with high temperatures, low 

precipitation and high solar radiation, which aligns with the documented requirements of 

bees. Furthermore, the preference for sandy soils was supported. The distances to forest 

edges, riparian areas and natural areas are only relevant if the resolution of the input data 

allows for these features to be differentiated. In contrast, the LULC data, assessments of nest-

ing and food resources, and the NDVI were not considered to be important. In contrast to 

Maxent, these were the variables that were identified as important. Therefore, an approach 

could be presented for RF that differs significantly in terms of input data from common pro-

cess-based models, where LULC data often form the basis of modelling. 

The limitations of this study can be attributed to the choice of research design, which proved 

inefficient. The decision to model species density presented a significant challenge when at-

tempting to make a comparison with Maxent. Furthermore, there is a lack of evaluation of the 

usefulness of species density modelling using GBIF data. It would have been beneficial to in-

corporate RF modelling with background points, enabling not only a comparison between the 

two RF approaches but also an enhanced comparison with Maxent. 

It would also be beneficial to validate the findings with supplementary occurrence data gath-

ered through a consistent sampling design. Given the low relevance of the LULC data, it would 

be helpful to include ecosystem condition as a factor, as this may provide a more comprehen-

sive consideration of the diverse ecosystem types. The methods employed in this study was 

based on modelling all bee families. To obtain more precise results in relation to the various 

input variables, it would be informative to model specific bee species, as their habitat require-

ments differ considerably. This approach could improve the model fit. 

Although the HSM developed in this study offers valuable insights into the relationship be-

tween pollinators and their environment, it is essential to acknowledge that no model can fully 

capture the complexities of nature. The RF model employed in this study captures significant 

interactions between important environmental variables and pollinator presence. However, it 

is a simplified representation of the underlying ecological dynamics. The model's strength lies 

in its capacity to demonstrate how different variables contribute to the prediction of suitable 

habitats, thereby offering practical guidance for conservation and habitat management. The 

results underscore the value of predictive modelling as a tool for understanding ecological sys-

tems. However, it is important to recognise that the model should not be viewed as an exact 

reflection of nature. Instead, it should be considered as a robust basis for understanding the 

relationship between pollinators and their habitats. 

In conclusion, the presented RF model provides a robust foundation for HSM of pollinators at 

the local and regional scales, based on GBIF data, which can be further developed.  
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Tab. A 1: Overview of the geodata used in this thesis 

Publisher Dataset Reference 

BKG CORINE Land Cover 5 ha 2018 © GeoBasis-DE/BKG 2024 

BKG Digital terrain model 200 m  © GeoBasis-DE/BKG 2024 

CLMS Urban Atlas Hannover 2018 © EU, CLMS 2018, EEA 

CLMS CLC+Backbone 2018 © EU, CLMS 2018, EEA 

DLR Sentinel-2 NDVI Germany 2015 © DLR Sentinel-2 NDVI 2015 Germany 

DWD Multi-annual grids of annual sunshine duration over Germany 1991-2020 © DWD CDC, version v1.0, 2018 

DWD Seasonal grids of sum of sunshine duration over Germany 2010-2024 © DWD CDC, version v1.0, 2018 

DWD Multi-annual grids of precipitation height over Germany 1991-2020 © DWD CDC, version v1.0, 2018 

DWD Seasonal grids of sum of precipitation over Germany 2010-2024 © DWD CDC, version v1.0, 2018 

DWD Multi-annual grids of drought index (de Martonne) over Germany 1991-2020 © DWD CDC, version v1.0, 2018 

DWD Seaonal grids of sum of drought index (de Martonne) over Germany 2010-2024 © DWD CDC, version v1.0, 2018 

DWD Multi-annual grids of monthly averaged daily minimum air temperature (2m) over Germany 1991-2020 © DWD CDC, version v1.0, 2018 

DWD Seasonal grids of monthly averaged daily minimum air temperature (2m) over Germany 2010-2024 © DWD CDC, version v1.0, 2018 

DWD Multi-annual grids of monthly averaged daily mean air temperature (2m) over Germany 1991-2020 © DWD CDC, version v1.0, 2018 

DWD Seasonal grids of monthly averaged daily mean air temperature (2m) over Germany 2010-2024 © DWD CDC, version v1.0, 2018 

DWD Multi-annual grids of monthly averaged daily maximum air temperature (2m) over Germany 1991-2020 © DWD CDC, version v1.0, 2018 

DWD Seasonal grids of monthly averaged daily maximum air temperature (2m) over Germany 2010-2024 © DWD CDC, version v1.0, 2018 

DWD 
Gridded multi annual monthly mean sums and multi annual yearly mean sum of incoming shortwave radiation 
(global radiation) on the horizontal plain for Germany based on ground and satellite measurements 1991-2020 

© DWD CDC, version V003, 2024 

DWD Multi-annual grids of soil temperature in 5 cm depth under uncovered soil 1991-2020 © DWD CDC, version 0.x, 2024 

DWD Multi-annual grids of soil moisture in 5cm depth under grass and sandy loam 1991-2020 © DWD CDC, version 0.x, 2024 

LBEG BK50 Sachdaten © LBEG, Germany, 2024 

LGLN Digital terrain model 1 m © GeoBasis-DE/LGLN 2024, CC-BY 4.0 

LGLN Basis-DLM © GeoBasis-DE/LGLN 2024, CC-BY 4.0 
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Tab. A 2: Selected CLC5 classes in Lower Saxony and UA classes in Hannover to create the distance raster 

 CLC5 Lower Saxony Urban Atlas Hannover 

Artificial 
areas 

111 Continuous urban fabric 11100 Continuous urban fabric 

112 Discontinuous urban fabric  

11210 Discontinuous dense urban fabric 

11220 Discontinuous medium urban fabric 

11230 Discontinuous low density urban fabric  

11240 
Discontinuous very low density urban 
fabric  

 11300 Isolated structures 

121 
Industrial or commercial 
units  

12100 
Industrial, commercial, public, military 
and private units 

122 
Road and rail networks 
and associated land 

12210 Fast transit roads and associated land 

12220 Other roads and associated land 

12230 Railways and associated land 

123 Port areas  

124 Airports  

131 Mineral extraction site: 
13100 Mineral extraction and dump sites 

132 Dump sites 

133 Construction sites 13300 Construction sites 
 13400 Land without current use 

141 Green urban areas 14100 Green urban areas 

142 Sport and leisure facilities 14200 Sports and leisure facilities 

Agricul-
tural  
areas 

211 Non-irrigated arable land 21000 Arable land (annual crops) 

222 
Fruit trees and berry plan-
tations 

 

231 Pastures  23000 Pastures 

Forest 

311 Broad-leaved forest 

31000 Forests 312 Coniferous forest 

313 Mixed forest 

Semi- 
natural 
areas 

321 Natural grasslands 

32000 Herbaceous vegetation associations 322 Moors and heathland 

324 
Transitional woodland-
shrub 

331 Beaches, dunes, sands 
33000 

Open spaces with little or no vegeta-
tions 333 Sparsely vegetated areas 

Wetlands 

411 Inland marshes 

40000 Wetlands 412 Peat bogs 

421 Salt marshes 

Water-
bodies 

511 Water courses 
50000 Water 

512 Water bodies 
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Tab. A 3: Soil texture types and their mean amounts of clay, silt and sand according to AG BODEN (2005) 

Soil texture type Clay Silt Sand 

Ls2 0.21 0.45 0.34 

Ls3 0.21 0.35 0.44 

Ls4 0.21 0.225 0.565 

Lt2 0.3 0.4 0.3 

Lt3 0.4 0.4 0.2 

Lts 0.35 0.225 0.425 

Lu 0.235 0.575 0.19 

Sl2 0.065 0.175 0.76 

Sl3 0.1 0.25 0.65 

Sl4 0.145 0.25 0.605 

Slu 0.125 0.45 0.425 

Ss 0.025 0.05 0.925 

St2 0.11 0.05 0.84 

St3 0.21 0.075 0.715 

Su2 0.025 0.175 0.8 

Su3 0.04 0.325 0.635 

Su4 0.04 0.45 0.51 

Tl 0.55 0.225 0.225 

Ts2 0.55 0.075 0.375 

Ts3 0.4 0.75 0.525 

Ts4 0.3 0.075 0.625 

Tt 0.825 0.175 0.175 

Tu2 0.55 0.425 0.125 

Tu3 0.375 0.575 0.1 

Tu4 0.3 0.7 0.05 

Uls 0.125 0.575 0.3 

Us 0.04 0.65 0.31 

Ut2 0.1 0.785 0.135 

Ut3 0.15 0.765 0.115 

Ut4 0.21 0.74 0.09 

Uu 0.04 0.9 0.1 
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Fig. A 1: Input data containing multi-annual climate data for the Hannover study area, resampled to a cell size of 
10 m 
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Fig. A 2: Input data containing multi-annual climate data for the Lower Saxony study area, resampled to a cell size 
of 100 m 
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Fig. A 3: Permutation importance (y) of the first RF iteration testing different spatial resolutions (x) for the study areas Hannover (red) and Lower Saxony (blue) 
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Fig. A 4: Permutation importance (y) of the second RF iteration testing different rescale ranges (x) and resolutions (red: 0.02°, green: 0.05°) with sampbias compared to the 
result of the first iteration of Lower Saxony with 500 m (blue) 
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Fig. A 5: Permutation importance (y) of the third RF iteration testing seasonal climate data for different periods (x) for the study areas Hannover (red) and Lower Saxony (blue) 
compared to the result of the first iteration of Hannover with 10 m cell size and the second iteration of Lower Saxony with  0.02° resolution and a rescale range of 0-1.5 
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Fig. A 6: Permutation importance (y) of the fourth RF iteration testing less input variables and different mtry (3: green, 4: blue) and number of trees (x) in Hannover compared 
to the results of the third iteration with seasonal climate data in the period of 2018-2024 
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Fig. A 7: Permutation importance (y) of the fifth RF iteration testing less input variables and different mtry (3: green, 4: blue) and number of trees (x) in Lower Saxony compared 
to the results of the second iteration using a resolution of 0.02° and a rescale range of 0-1.5 
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Fig. A 8: Scatter plots with values of the input variables (y) and RF prediction (x) in Hannover in spring 2023 
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Fig. A 9: Scatter plots with values of the input variables (y) and RF prediction (x) in Hannover in summer 2023 
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Fig. A 10: Scatter plots with values of the input variables (y) and RF prediction (x) in Hannover in autumn 2023 
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Fig. A 11: Scatter plots with values of the input variables (y) and RF prediction (x) in Lower Saxony 
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Fig. A 12: Importance (y) of the Maxent models in % for Hannover testing different input data in four runs (x) 
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Fig. A 13: Importance (y) of the Maxent models in % for Lower Saxony testing different input data in five runs (x)
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